
Developing a High Speed Data Acquisition System For Nuclear Physics

Experiments Using FPGAs

JT Mills

Eastern Kentucky University, Richmond KY 40475

(Dated: August 11, 2022)

I. INTRODUCTION

The study of fundamental symmetries has become a prime focus for nuclear and particle physi-

cists, as it provides a deeper understanding of the nature of the universe and its formation. For

example, the matter-antimatter asymmetry of the early universe, also known as baryon asymmetry,

remains an open question in cosmology, and the study of fundamental symmetries could provide

the answer. In particular, the Neutron Optics Parity and Time Reversal Experiment (NOPTREX)

collaboration is studying the violation of time-reversal symmetry. This symmetry violation is re-

quired by our current model of the Big Bang in order to explain why the universe formed as matter

and not antimatter.

To investigate this asymmetry, the NOPTREX collaboration is using a low energy neutron

beam to measure n-gamma resonances in heavy nuclei, which will be measured by an array of 24

sodium-iodide (NaI) scintillation gamma detectors (Figure 1)[1]. Therefore, this measurement will

also require a high speed data aquisition system to process the large amounts of data from the

array in real time. By using field programmable gate arrays (FPGAs) to digitize and filter the

analog signals from the detectors, it is possible to implement custom built data analysis firmware

based on the demands of the experiment.

FIG. 1. The 24 NaI scintillation detector array for NOPTREX, being built at EKU.

In this research, I will use the CAEN SciCompiler software to develop a firmware for the

DT5560SE open FPGA 32 channel digitizer that uses a trapezoidal filter and multichannel ana-



2

lyzer (MCA) to record the energy of each detector pulse, as well as charge integration to measure

the detector current over a given time period. The block-coding style of the SciCompiler applica-

tion simplifies the firmware design process, and will allow for a gradual introduction to computer

logic. Subsequently, I will use the Vivado coding environment to develop firmware for the KRM-

4ZU27DR development board. This board uses many high performance components to process

high frequency digital signals, and will be used to development new methods of data acquisition

for nuclear experiments. Upon the completion of this research, the DT5560SE digitizer will be

used to acquire data for the NaI array being built at Eastern Kentucky University, and I will have

gained a deeper understanding of computer logic and firmware development for FPGAs.

II. THE NAI(TL) ARRAY

As mentioned previously, the NOPTREX collaboration has developed an array of NaI(Tl) scin-

tillation detectors to probe the symmetry of neutron interactions. These detectors use a sodium-

iodide crystal that has been doped with thallium to detect nuclear radiation. When the radiation

quanta are incident on the crystal’s atomic structure, the interaction causes an excitation of the

electrons within the thallium sites. Upon the de-excitation of these electrons, a photon of light

in the near-visible spectrum is produced. This pulse is then funneled through the reflective of

the crystal casing and into the photomultiplier tube (PMT) coupled to the crystal. This PMT is

responsible for processing this pulse of light into retreiveable data.

The entry to the bottom of the PMT, known as the photocathode, s coated in a photoemissive

material. By the photoelectric effect, the momentum of the incoming scintillated photon causes

a certain number of photoelectrons to be released by the photocathode. Because the tube is held

at high voltage, these free electrons are then accelerated up the tube and collide with a series of

high voltage dynodes. This produces a cascade of electrons that eventually reach the anode of the

PMT, and carry enough energy to form a detectable current. This signal is then received by the

electronics and ultimately processed by the data acquisition system.

The detectors for the NOPTREX experiment use a custom made electronics board for voltage

division between the dynodes and signal processing. This board allows for operation in either pulse

or current modes, based on the demands of the experiment. This makes the array significantly

more adaptable for later experiments. They are also contained within a mu-metal magnetic shield

that has been arranged for maximum protection from exterior magnetic field interference and a

spring-loaded housing assembly to ensure a light-tight enevironment.



3

III. FIELD PROGRAMMABLE GATE ARRAYS

Field programmable gate arrays (FPGAs) differ from conventional CPUs in their ability to have

their architecture rearranged based on the demands of a specific task. The architecture of an FPGA

consists of a system of configurable logic blocks (CLBs) made up of look-up tables (LUTs) to define

the logic structure and flip-flops to store data. In addition to the CLBs, digital signal processor

(DSP) slices are also incorporated to handle more complex tasks such as addition, multiplication,

and accumulation. These components are connected by interconnects, which serve as pathways for

the signals to travel through. By combining these systems with I/O ports and RAM memory, it is

possible to create a fully customizable FPGA that can be reprogrammed on the fly using a hardware

development language (HDL). While the use of a programming language may cause FPGA design

to seem similar to computer software coding, it is actually much different as an FPGA requires the

definition of the specific arrangement of its hardware. The adaptability of FPGAs make them a

viable candidate for high speed data acquisition, as they are capable of efficiently processing data

in real time and thereby reduce the amount of post-recording data analysis for the experiment.

A. DT5560SE

To manage the DAQ system for the NOPTREX NaI detector array, we will use the CAEN

DT5560SE open FPGA digitizer featuring 32 analog input channels, 14-bit ADC, and 125 MS/s

processing capabilities (Figure 2)[2]. The board also features 6 extra digital I/O ports, two optical

link ports, and two sync ports which be used to synchronize the internal clock with that of another

board. The board can be connected to a PC using either a USB or Ethernet connection, allowing

access to the board settings, analog front-end settings, and the FPGA flashed firmware. The high

processing power of this device in conjunction with the customizability of the FPGA will allow for

high speed, real-time signal processing for each of the 24 detectors.

The board defaulted with a precompiled multichannel pulse height analysis firmware that in-

cluded an oscilloscope and energy spectrum. This default firmware allowed for each of the 32 analog

channels to collect and process data. In addition, the package included the open-source DT55xx

readout software to allow for a graphical user interface with the firmware. The readout software

displays the oscilloscope output, energy spectrum, and access to the signal processing and analog

front-end settings. Also, it allows for statistical analysis of the energy spectrum. However, in order

to customize the signal processing methods to include charge integration triggered by an external



4

FIG. 2. The CAEN DT5560SE 32 channel Open FPGA digitizer.

signal, it will be necessary to use the CAEN SciCompiler software to develop a new firmware for

the board, and subsequently the CAEN software development kit to create a software capable of

interfacing with the firmware.

IV. CHARGE INTEGRATION FIRMWARE DESIGN WITH CAEN SCICOMPILER

A. SciCompiler

The SciCompiler software, developed by Nuclear Instruments in conjunction with CAEN, allows

for high level block coding of the firmware for the DT5560SE digitizer and the Xilinx FPGA. Rather

than starting from scratch using HDL code, this software makes the firmware development process

more approachable by allowing for the use of premade digital components for a wide variety of

nuclear physics applications. It also includes registers for reading or writing data, digital or analog

I/O ports, and a collection of digital logic and timing components. The software’s ease of access and

compatibility with the digitizer makes it the obvious choice for the development of the NOPTREX

NaI array DAQ system.

In order to use the full functionality of the SciCompiler software, it is necessary to install

the Xilinx Vivado software and Microsoft Visual Studios. Vivado can be used to develop FPGA

firmware and produce bitstreams with Vivado hardware development language, or VDHL. It allows

for the entire prototyping, design, debugging, and construction process within the application.

When a firmware is developed and compiled in SciCompiler, the SciCompiler software automatically

connects to the Vivado application to construct the design, compile the firmware, and produce the

optimal bitstream for the FPGA to execute the customized design.

In addition to producing the firmware, SciCompiler also creates a software development kit

based on the firmware requirements in order to assist with the software development process. This



5

kit includes libraries for both Python and Visual C++ that can be opened in Microsoft Visual

Studios, as well as an example program to demonstrate the connection to the board. By using these

libraries and examples, it is possible to design a software application capable of interfacing with

the components included in the compiled firmware. In short, the SciCompiler software provides all

the necessary components to make the FPGA firmware development process accessible to those at

the introductory level.

B. Charge Integration

In conventional nuclear detection, there are two primary methods for operating a detector: pulse

or current mode[3]. In pulse mode, the detector utilizes a higher gain and possibly a preamplifier

to analyze individual pulses of radiation. This application is useful for cases in which the energy

or timing of the events is needed. On the other hand, current mode provides an average of the

voltage produced by the radiation of a given time. This method is useful for applications in which

the count rate is very high and the pileup rate would make counting pulses more difficult. While

Both of these methods exhibit their own strengths and weaknesses for different applications, for

the purposes of this experiment it will be best to utilize the current mode operation. This mode

naturally lends itself to the charge integration method of signal analysis, as it also provides an

average of the activity over a given time period. This removes the need for complicated filters and

excessive memory usage for real-time analysis.

For the NOPTREX DAQ system, I have developed a charge integration firmware for processing

the signals (Figure 3). The SciCompiler charge integration module takes a trigger signal and an

integration time input and measures the area under the input signal over the given integration time,

which can be set by a register. The module outputs a single value for the area for each integration

window. It also features a pileup inhibitor setting and a baseline subtraction, which can also be

set by registers. This module has been implemented into the various iterations of firmware that I

have created throughout this project.

In the preliminary firmware, I used a leading edge trigger module to trigger on the analog

detector signal. By setting the trigger threshold using a register, the leading edge trigger module

outputs a digital signal to the charge integration module for every pulse that exceeds the threshold.

However, this design lead to the integration being activated rapidly and for very short periods of

time, which produced a low amount of area counts and statistically unsatisfying data (Figure

4). In order to configure the firmware to match the experimental requirements for NOPTREX, I



6

FIG. 3. The SciCompiler block diagram for the charge integration firmware.

developed more versions with different trigger settings.

A later version of the firmware featured an external trigger signal consisting of a rectangular

pulse produced by a signal generator. This low frequency external pulse activated the leading edge

trigger module, which then enabled the charge integration. The integration time was set to the

period of the external trigger pulse. This lead to better results, since it required fewer integration

windows and each window measured a greater area (Figure 5).

V. FIRMWARE FOR THE NOPTREX EXPERIMENT

To adapt this initial charge integration firmware to fit the goals of the NOPTREX experiment,

a new iteration needed to be made (Figure 6). In this version, the charge integration module is

triggered by a 20Hz external signal, which in the case of the NOPTREX experiment at the Los



7

FIG. 4. The results of a Cesium 137 spectrum using the first firmware iteration.

FIG. 5. The results of a Cesium 137 spectrum using the second firmware iteration.

Alamos Lab Neutron Spallation Source will come from the proton accelerator that produces the

neutron events. This signal is delivered to the rising edge trigger module which subsequently trig-

gers a pulse generator to produce an internal signal at a frequency that can be set by a register.

This signal causes the charge integration module to perform periodic integrations over the period

of this signal until the next external signal is received. Each of the results from these integration

windows is then saved to a list module, which produces a downloadable single-column text file

containing each integration result in a separate row. This feature will simplify the software de-

velopment process, as the program will just have to read the contents of the list module for each

external signal period and write those contents to a text file.



8

FIG. 6. The second iteration of the charge integration firmware.

VI. FIRMWARE TESTING

To test the functionality of the firmware design, I used the SciCompiler resource explorer appli-

cation in place of a dedicated readout software to evaluate the output. he resource explorer allows

the user the view the output of the oscilloscope module, as well as download the contents of the

list module to a text file. In order to diagnose the operation of he firmware throughout the devel-

opment process, I connected various digital signals to display on the oscilloscope output. These

included the main trigger signal from the 20Hz external signal and leading edge trigger module,

the status of the charge integration trigger signal generator, and the signal notifying that a charge

integration result had been produced. These signals, along with the raw analog input from the

detector and the 20Hz input signal, made up the oscilloscope output. This view allowed me to

troubleshoot the issues with the firmware during the development process.

Following the initial troubleshooting measures, I began the main testing phase for the firmware.

To do this, I used an oscilloscope with a waveform generator tool to feed waveforms into the

firmware to mimic the data received during an experiment. I used this method rather than a

simple detector and radioactive source setup because a radioactive source produces a uniform rate

of activity over time. This means that the charge integral is constant, and it doesn’t prove the

ability of the firmware to discover anomalies in the data, such as a nuclear resonance. For this



9

reason, I used previously recorded data from a prior NOPTREX experiment to test the ability

of the firmware to adequately process the signals in real-time and reproduce the results of the

experiment.

For the purposes of this test, I used the raw data recorded for the NOPTREX Double Lan-

thanum Experiment at Los Alamos Lab Neutron Spallation Source. This data demonstrates the

gamma emission of a Lanthanum target bombarded by polarized, low-energy neutrons. The goal

of this experiment is to use the nuclear resonances apparent in the data to reveal parity violat-

ing asymmetries in the neutron-nuclei interactions. Therefore, by processing this raw data using

the charge integration firmware and attempting to reproduce the nuclear resonance data, we can

support the efficacy of the firmware design.

With the raw data contained in a ROOT file, I was able to use the Python Uproot module to

extract the waveform data for one neutron event and convert the binary file to a list of integers.

This file included the voltage yield of the detectors for each neutron event within a TTree. After

extracting the data and converting to integer form, I was able to arrange the comma separated

values file to fit the requirements of the oscilloscope. I then used the oscilloscope to feed the

neutron event waveform (Figure 7) to the digitizer. I then collected multiple runs of the charge

integration firmware to evaluate its performance. As expected, I found that longer integration

windows resulted in a lower resolution for the final waveform, while shorter integration windows

resulted in a waveform with a resolution closer to that of the original waveform (Figure 8).

FIG. 7. The original waveform from the raw Double Lanthanum data.



10

[h]

FIG. 8. The resulting waveform from processing the Double Lanthanum waveform with the charge integra-

tion firmware.

VII. FUTURE TASKS

The original Double Lanthanum data analysis used a pulse mode approach to characterize

the individual peaks of each neutron event waveform, and used these peaks from every neutron

event combined to create a time-of-flight histogram and an energy histogram[4]. This time-of-

flight histogram shows the variations in gamma intensity based on the different energies of the

incoming neutrons. Since the higher energy neutrons will arrive at the target more quickly than

those with lower energy, the resulting gamma intensity over time can reveal the nuclear resonances

in the target based on the energy of the incident neutrons. For the ultimate test of the abilities

of the charge integration firmware, it will be necessary to recreate this time-of-flight histogram

and compare it to that of the original analysis to evaluate the ability of the firmware to discover

nuclear resonances. This will require delivering a series of different neutron event waveforms to

the digitizer rather than a single event. Because each event contains roughly 500,000 data points,

this series of events encompasses a huge amount of data. The next important task in conditioning

the firmware will be to compile this huge data file and characterize it to fit the requirements of the

oscilloscope waveform generator.

To complement this final test, it is also necessary to develop a functioning readout software for

the charge integration firmware. This is because the chain of neutron events will produce a list of



11

integration results for each event, and a software is required to separate these lists and compile them

accordingly. This software will need to write to the read registers in the firmware for the settings

of the charge integration and trigger modules. It must also read the data from the list module and

the oscilloscope output. When an external 20Hz trigger is received, the software should save the

previous list to a new branch of a ROOT binary file, reset the list, and begin the integration once

again. This can all be simplified using the software development kit provided by the SciCompiler

software. Upon compilation of a firmware, SciCompiler creates a set of register files, as well as

libraries to demonstrate the commands used to communicate with the digitizer. Future work will

focus on developing and testing this software, and subsequently using it to perform the final test

on the firmware.

VIII. REFERENCES

[1]: Jak Doskow. Indiana University Bloomington.

[2]: https://www.caen.it/

[3]: G. F. Knoll. Radiation Detection and Measurement, Fourth Edition. 2010.

[4]: David Matthews. University of Kentucky


