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1 Introduction

We are modeling a conductive system as a percolation network to study critical
phenomena. In our model of percolation, a network in a square lattice consists of
conducting ”bonds” or ”links” which are joined by “sites” or “nodes”. The links
between each two sites may be connected with probability p, or not connected
with probability 1 – p, and they are assumed to be independent of each other.
The possibility that a connected path exists from top to bottom or from side
to side is dependent on whether p is above or below the percolation threshold,
the probability at which a connected path may manifest. Percolation has a
singularity at the critical point p = pc and many properties behave as of a
power-law as p approaches pc. For the square lattice the percolation threshold
is exactly pc = 1

2 . For pc < 1
2 there is no such path, and for pc > 1

2 there is a
greater than zero chance that there is a connected path.

In our conductive system the links represent conductors, with specified con-
ductance; equal to 1(connected link) or 0(missing link). The boundaries(edges)
of the square will either be grounded(V = 0) or not allow current to exit. At
a chosen node inside the boundaries the voltage is specified to be V = 1. The
voltages on the other sites then give rise to currents on the conductive links, and
these currents have to balance at every interior site, so that just as much flows
into the site as flows out(according to Kirchhoff’s Laws). This defines a large
set of linear equations that determines the voltages at the interior sites and the
total current that flows through the network. From that point we use the set
of linear equations to find the total conductance – the total current entering or
leaving the network.

Now there are different questions we can pose: one can apply a voltage at
one point and provide a grounded point somewhere else, and determine the
current; or the grounded part could be one edge of a large square; the top edge
could be at one potential and the bottom edge at another; or we could study
the case with a rectangle. In each case there has to be long connected paths for
there to be conductance; the magnitude of the conductance will depend on the
length and whether there are many alternate routes or just a few.
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2 Procedure

2.1 Preliminary Data

The program I will be using to study this model, written by Dr. Straley, has
a variable p that is the fraction of internal bonds that have unit conductance.
As earlier mentioned, the percolation threshold for the square lattice is exactly
pc = 1

2 , so we will run our simulations with p = 1
2 . This will be our method

of studying the percolation problem and study how physical properties behave
with system size N. Our first goal is to gather data in the case where we apply
a voltage to middle of the lattice and calculate the average conductance with
varying sizes of N. From there we will consider other cases that were mentioned
above. We plan to run many simulations and gather data using the Lipscomb
Compute Cluster(LCC). With our knowledge of the percolation threshold it
is possible for us make predictions for how the conductance will behave. The
conductivity exponent, t, describes how the electrical conductivity G goes to
zero as the percolation threshold is approached when p > pc,

G ∼ |p− pc|−t

[3]
From the data we will plot log (N) versus log (G) where N is the side length

of our square and G is our average conductance. The slope of the curve is
the critical exponent, t, that describes the power law of the conductance with
respect to the size of the lattice. The behavior is related to what was described
above by replacing |p− pc| by N. Thus, the conductance is given by G ∼ N−t.
The critical exponent has generally been accepted to be t ≈ 0.97 [1] but we
perhaps think it could be t = 1.

We ran these simulations with N = 16, 32, 65, 128. The slope of the curve
is approximately -1.01, which is above our predicted t, but memory overflow
issues in the program kept us from simulating larger values of N.
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2.2 Conductance of Different Size Lattices

To see the relationship between the conductance of the system and the size of
the system, where we place the potential in the origin of the lattice, we decided
to run the program multiple times with two difference sequences of increasing N.
One sequence being even, N = 8, 16, 32, 64, 128, and the other odd, N = 9, 17,
33, 65, 129. The reasoning for one sequence being odd and one sequence being
even is because in an even lattice there is no ”center”. If we have a 4x4 lattice,
the site at which we decide the place the potential would slightly be closer to
one boundary over the other, whereas in an odd lattice there is a definite origin
in the lattice. Although the effects of off-center voltage point diminish quickly
as the size increases.

From the plots above we can see quite a difference in the average conductance
for lattice sizes 8 and 9, but in the lattice sizes 128 and 129 the difference is
not observable. We can see that we have slight differences in our exponent, t,
in the even and odd runs. The odd run has t closer to unity than the even run
does. This is presumably from the effects the even sequence endures due to the
off centered origin.

Now I wanted to observe the behavior of the conductance with larger lattices
knowing that the factors that affect smaller lattices diminish and do not have a
significant affect on the conductance in the larger case. In this run I simulated
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lattices of size N = 50,100,150,200 and still placing the potential in the origin
of the lattice.

In this above figure our exponent t is very close to unity, but we our program
is still limited to only calculated lattices of size 200 so we are unable to see how
the behavior continues. We assume the value of the slope would be closer to the
actual value of t. In the following weeks I will calculate the lattice that contains
a larger set of N sizes, and I hope to increase the size of the lattice beyond the
value of 200.

2.3 The Distance Function

In attempting to find the relationship between the average conductance and
the distance to the boundary, we want the ”distance” that explains between a
point in the square and the boundary, that treats all sides the same and makes
sense from the point of view of conformal transformations. To find this distance
function, we want to map our square into an infinite half-plane and then use
the method of images technique, which is rather simple for this geometry, and
solve for an expression of the distance. Dr. Reš had found an expression for
this function [2] to solve a similar problem that Dr. Straley has adjusted to fit
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our specific problem

Distance =

[
Im[sn([ 2KN ]z|k)]

|cn([ 2KN ]z|k)× dn([ 2KN ]z|k)|

]−t
ν

Where z = (x+ i(y+K)) is a complex variable defined on the rectangle, and sn,
cn, and dn are the Jacobian elliptic functions. To further my understanding of
this distance concept, I wrote a program in python to plot a contour showing the
distance to the boundary at any point in the lattice using the distance function.

I also made a line graph to show how the distance behaves if you were
traverse the lattice from side to side or along a diagonal.

2.4 Conductance at Different Distances from Boundary

After attaining a basic understanding of how the distance formula works, it is
time to test it’s relation with the conductance. The next part of the project is to
calculate the conductance from points at various places in the square, with the
square always the same size. If the theory is right, the conductance is a function
of the distance only. The two-dimensional set of values, the coordinates of a
point in the lattice, collapses into a function of one variable.

For my first run to test this I simulated a lattice of N = 100 at seventeen
intentional points which creates a small square lattice of its own.
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From the plot we can see that the conductance seems to depend on the
distance. Also we see multiple points have the different conductance’s for the
same distance. The reason for this is that in a even numbered lattice there
is no proper center as mentioned earlier. So our coordinates are not actually
symmetric about the origin.

In my next run I wanted more data to show express the relationship more
accurately. I simulated a larger lattice of N = 150 at 40 random coordinates to
better test the theory.
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In this plot we can see the conductance relies on the distance more clearly.
We can conclude that the conductance to the boundary depends only on the
”distance”.

3 Conclusion

We have seen that the relationship between the average conductance and the
size of the lattice by a power law hold true, and we have seen the same for the
conductance and the distance to the boundary. The distance to the boundary
question can still be studied further by modifying the geometry of the lattice:
by trying odd sided lattices. The next immediate question we are going to study
is how the distance function fares when we insulate one the boundaries. We may
also study the geometry of a rectangle or triangle.
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