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1 Introduction

We are modeling a conductive system as a percolation network to study critical
phenomena. In our model of percolation, a network in a square lattice consists of
conducting ”bonds” or ”links” which are joined by “sites” or “nodes”. The links
between each two sites may be connected with probability p, or not connected
with probability 1 – p, and they are assumed to be independent of each other.
The possibility that a connected path exists from top to bottom or from side
to side is dependent on whether p is above or below the percolation threshold,
the probability at which a connected path may manifest. Percolation has a
singularity at the critical point p = pc and many properties behave as of a
power-law as p approaches pc. For the square lattice the percolation threshold
is exactly pc = 1

2 . For pc < 1
2 there is no such path, and for pc > 1

2 there is a
greater than zero chance that there is a connected path.

In our conductive system the links represent conductors, with specified con-
ductance; equal to 1(connected link) or 0(missing link). The boundaries(edges)
of the square will either be grounded(V = 0) or not allow current to exit. At
a chosen node inside the boundaries the voltage is specified to be V = 1. The
voltages on the other sites then give rise to currents on the conductive links, and
these currents have to balance at every interior site, so that just as much flows
into the site as flows out(according to Kirchhoff’s Laws). This defines a large
set of linear equations that determines the voltages at the interior sites and the
total current that flows through the network. From that point we use the set
of linear equations to find the total conductance – the total current entering or
leaving the network.

Now there are different questions we can pose: one can apply a voltage at
one point and provide a grounded point somewhere else, and determine the
current; or the grounded part could be one edge of a large square; the top edge
could be at one potential and the bottom edge at another; or we could study
the case with a rectangle. In each case there has to be long connected paths for
there to be conductance; the magnitude of the conductance will depend on the
length and whether there are many alternate routes or just a few.
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2 Procedure

The program I will be using to study this model, written by Dr. Straley, has
a variable p that is the fraction of internal bonds that have unit conductance.
As earlier mentioned, the percolation threshold for the square lattice is exactly
pc = 1

2 , so we will run our simulations with p = 1
2 . This will be our method

of studying the percolation problem and study how physical properties behave
with system size N. Our first goal is to gather data in the case where we apply
a voltage to middle of the lattice and calculate the average conductance. From
there we will consider other cases that were mentioned above. We plan to run
many simulations and gather data using the LCC cluster. With our knowledge
of the percolation threshold it is possible for us make predictions for how the
conductance will behave. The conductivity exponent, t, describes how the elec-
trical conductivity G goes to zero as the percolation threshold is approached
when p > pc,

G ∼ |p− pc|−t

[2]
From the data we will plot log (N) versus log (G) where N is the side length

of our square and G is our average conductance. The slope of the curve is the
exponent, t, that describes the power law of the conductance with respect to
the size of the lattice. The behavior is related to what was described above by
replacing |p − pc|−t by N. Thus, the conductance is given by G ∼ N−t. The
critical exponent has generally been accepted to be t ≈ 0.97 [1] but we perhaps
think it could be t = 1.

Dr. Straley and I ran some preliminary simulations with N = 17, 32, 65,
128. The slope of the curve is approximately -1.01, which is above our predicted
t, but memory overflow issues in the program kept us from simulating larger
values of N. After we fix that issue we plan to simulate lattices up to potentially
N ∼ 1000.

2



References

[1] CJ Lobb and DJ Frank. “Percolative conduction and the Alexander-Orbach
conjecture in two dimensions”. In: Physical Review B 30.7 (1984), p. 4090.

[2] Joseph P. Straley. “Percolation Structures and Processes”. In: Annals of
the Israel Physical Society (Vol. 5).

3


