Strachan Group

Our work on the surface potential of few-layer graphene films is featured as the recent cover article of the January 2009 issue of Nano Letters.

Using electrostatic force microscopy we probe the charge screening features of few-layer graphene films.

The work was performed in collaboration with S. S. Datta, E. J. Mele , and A. T. Johnson.


Crystallographic etching of few-layer graphene which we recently reported in Nano Letters was highlighted by Nature Nanotechnology.

By utilizing metallic nanoparticles, we are able to etch few-layer graphene samples along specific crystallographic directions.

This work was performed in collaboration with S. S. Datta, S. M. Khamis , and A. T. Johnson.



Publications
  • Graphene Used as a Lateral Force Microscopy Calibration Material in the Low-Load Non-Linear Regime
    M. J. Boland, J. L. Hempel, A. Ansary, M. Nasseri, and D. R. Strachan
    Review of Scientific Instruments, In press (2018)

  • Aligned van der Waals Coupled Growth of Carbon Nanotubes to Hexagonal Boron Nitride
    M. Nasseri, A. Ansary, M. J. Boland, and D. R. Strachan
    Advanced Materials Interfaces, https://doi.org/10.1002/admi.201800793 (2018)

  • Parallel Boron Nitride Nanoribbons and Etch-Tracks Formed Through Catalytic Etching
    A. Ansary, M. Nasseri, M. J. Boland, and D. R. Strachan
    Nano Res. 11, 4874-4882 (2018)

  • Etch Track-Directed Growth of Carbon Nanotubes on Graphite
    M. Nasseri, A. Ansary, M. J. Boland, and D. R. Strachan
    Physica E 104, 165-172 (2018)

  • Integrated Multi-Terminal Devices Consisting of Carbon Nanotube, Few-Layer Graphene Nanogaps, and Few-Layer Graphene Nanoribbons Having Crystallographically Controlled Interfaces.
    D. R. Strachan and D.P. Hunley
    US Patent US9859513B2 (2018)

  • Increased power factors of organic-inorganic nanocomposite thermoelectric materials and the role of energy filtering
    Z. M. Liang, M. J. Boland, K. Butouna, D. R. Strachan, and K. R. Graham
    Journal of Materials Chemistry A, 5, 15891-15900 (2017)

  • Nonlinear Ballistic Transport in an Atomically-Thin Material
    M. J. Boland, A. Sundararajan, M. J. Farrokhi, and D. R. Strachan
    ACS Nano (2016)

  • Direct observation of Li diffusion in Li-doped ZnO nanowires
    G. Li, L. Yu, B. M. Hudak, Y.-J. Chang, H. Baek, A. Sundararajan, D. R. Strachan, G.-C Yi, and B. S. Guiton
    Mater. Res. Express 3, 054001 (2016)

  • Crystallographically-oriented carbon nanotubes grown on few-layer graphene films
    D. R. Strachan and D.P. Hunley
    US Patents US9390828B2 and US9388513B2 (2016)

  • Integrated Nanotubes, Etch Tracks, and Nanoribbons in Crystallographic Alignment to a Graphene Lattice
    D. P. Hunley, M. J. Boland, D. R. Strachan
    Advanced Materials, 27, 813-818 (2015)

  • Striped Nanoscale Friction and Edge Rigidity of MoS2 Layers
    M. J. Boland, M. Nasseri, D. P. Hunley, A. Ansary, and D. R. Strachan
    RSC Advances 5, 92165-92173 (2015)

  • Parallel Fabrication Of Nanogaps And Devices Thereof
    D. R. Strachan, D. E. Johnston, B. S. Guiton, P. K. Davies, D. A. Bonnell, A. T. Johnson
    Granted US Patent No. 8918152 (2014)

  • Electrostatic Force Microscopy and Electrical Isolation of Etched Few-Layer Graphene Nano-Domains
    D. P. Hunley, A. Sundararajan, M. J. Boland, D. R. Strachan
    Appl. Phys. Lett., 105, 243109 (2014)

  • Tuning between crystallographically aligned carbon nanotube growth and graphene etching
    M. Nasseri, D. P. Hunley, A. Sundararajan, M. J. Boland, D. R. Strachan
    Carbon 77, 958-963 (2014)

  • Electronic device incorporating memristor made from metallic nanowire
    D. R. Strachan and S. L. Johnson
    Granted US Patent No. 8716688 B2 (2014)

  • Doping and hysteretic switching of polymer-encapsulated graphene field effect devices
    A. Sundararajan, M. J. Boland, D. P. Hunley, and D. R. Strachan
    Appl. Phys. Lett. 103, 253505 (2013)

  • Analytical model for self-heating in nanowire geometries
    D. P. Hunley, S. L. Johnson, R. L. Flores, A. Sundararajan, and D. R. Strachan
    J. Appl. Phys. 113, 234306 (2013)

  • Synthesis and Characterization of p-n Homojunction-Containing Zinc Oxide Nanowires
    G. Li, A. Sundararajan, A. Mouti, S. J. Pennycook, D. R. Strachan, and Beth S. Guiton
    Nanoscale (2013)

  • Friction, adhesion, and elasticity of graphene edges
    D. P. Hunley, Tyler J. Flynn, Tom Dodson, A. Sundararajan, M. J. Boland, and D. R. Strachan
    Phys. Rev. B 87, 035417 (2013)

  • Preparation of atomically flat SrTiO3 surfaces using a deionized-water leaching and thermal annealing procedure
    J. G. Connell, B. J. Isaac, G. B. Ekanayake, D. R. Strachan, and S. S. A. Seo
    Appl. Phys. Lett. 101, 251607 (2012)

  • Crystallographically Aligned Carbon Nanotubes Grown on Few-Layer Graphene Films
    D. P. Hunley, S. L. Johnson, J. K. Stieha, A. Sundararajan, A. T. Meacham, I. N. Ivanov, and D. R. Strachan
    ACS Nano 5, 6403-6409 (2011)

  • High throughput nanogap formation using single ramp feedback control
    S. L. Johnson, D. P. Hunley, A. Sundararajan, A. T. Johnson, and D. R. Strachan
    IEEE Trans. Nano. 10, 806-809 (2011)

  • High On/Off Ratio Graphene Nanoconstriction Field Effect Transistor
    Y. Lu, B. Goldsmith, D. R. Strachan, J. Lim, Z. Luo, A. T. Johnson
    Small 6, 2748-2754 (2010)

  • Memristance of single component metallic nanowires
    S. L. Johnson, A. Sundararajan, D. P. Hunley, and D. R. Strachan
    Nanotechnology 21, 125204 (2010)

  • Gate Coupling to Nanoscale Electronics
    S. S. Datta, D. R. Strachan, and A. T. Johnson
    Phys. Rev. B 79, 205404 (2009)

  • Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films
    S. S. Datta, D. R. Strachan, E. J. Mele, and A. T. Johnson
    Nano Lett. 9, 7 (2009)
     
  • Crystallographic Etching of Few-Layer Graphene
    S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. Johnson
    Nano Lett. 8, 1912 (2008)
     
  • Real-Time TEM Imaging of the Formation of Crystalline Nano-scale Gaps
    D. R. Strachan, D. E. Johnston, B. S. Guiton, S. S. Datta, P. K. Davies, D. A. Bonnell, and A. T. Johnson
    Phys. Rev. Lett. 100, 056805 (2008)
     
  • Why canít experimentalists agree on the superconducting critical exponents?
    M.C. Sullivan, D. R. Strachan, Su Li, Hua Xu, K. Segawa, Yoichi Ando, Steven M. Anlage, and C.J. Lobb
    Physica C 468, 284 (2008)
     
  • Parallel Fabrication of Nanogap Electrodes
    D. E. Johnston, D. R. Strachan, and A. T. Johnson
    Nano Lett. 7, 2774 (2007)
     
  • Electrostatic Force Microscopy of Nanofibers and Carbon Nanotubes: Quantitative Analysis Using Theory and Experiment
    S. S. Datta, C. Staii, N. J. Pinto, D. R. Strachan, and A. T. Johnson
    Mater. Res. Soc. Symp. Proc. 1025E, 1025-B13-03 (2007)
     
  • Clean Electromigrated Nanogaps Imaged by Transmission Electron Microscopy
    D. R. Strachan, D. E. Smith, M. D. Fischbein, D. E. Johnston, B. S. Guiton, M. Drndic, D. A. Bonnell, and A. T. Johnson
    Nano Lett. 6, 441 (2006)
     
  • Polarization reorientation in ferroelectric PZT thin films with electron beams
    D. B. Li, D. R. Strachan, J. H. Ferris, and D. A. Bonnell
    J. Mater. Res. 21, 935 (2006)
     
  • Size-dependent diffusion in an Aging Colloidal Glass
    D. R. Strachan, G. C. Kalur, and S. R. Raghavan
    Phys. Rev. E. 73, 041509 (2006)
     
  • Scaling of cross-over currents in current-voltage characteristics of YBa2Cu3O7-d films
    D. R. Strachan, M. C. Sullivan, and C. J. Lobb
    Phys. Rev. B. 73, 012512 (2006)
     
  • Controlled Fabrication of Nano-gaps in Ambient Environment for Molecular Electronics
    D. R. Strachan, D. E. Smith, D. E. Johnston, T.-H. Park, Michael J. Therien, D. A. Bonnell, and A. T. Johnson
    Appl. Phys. Lett. 86, 043109 (2005)
     
  • Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition
    M. C. Sullivan, D. R. Strachan, T. Frederiksen, R. A. Ott, and C. J. Lobb
    Phys. Rev. B. 72, 092507 (2005)
     
  • Normal-superconducting phase transition mimicked by current noise
    M. C. Sullivan, T. Frederiksen, J. M. Repaci, D. R. Strachan, R. A. Ott, and C. J. Lobb
    Phys. Rev. B (Rapid Comm.) 70, 140503(R) (2004)
     
  • What a superconducting transition should look like: Extrapolating data from scaling plots
    D. R. Strachan, M. C. Sullivan, T. Frederiksen, R. A. Ott, and C. J. Lobb
    Physica C 408Ė410, 562 (2004)
     
  • Zero-field superconducting phase transition obscured by finite-size effects in thick YBa2Cu3O7-d films
    M. C. Sullivan, D. R. Strachan, T. Frederiksen, R. A. Ott, M. Lilly, C. J. Lobb
    Phys. Rev. B 69, 214524 (2004)
     
  • Dynamic Scaling and Two-Dimensional High-Tc Superconductors
    D. R. Strachan, C. J. Lobb and R. S. Newrock
    Phys. Rev. B. 67, 174517 (2003)
     
  • Probing the limits of superconductivity
    D. R. Strachan, M. C. Sullivan, and C. J. Lobb
    Proc. SPIE, Superconductivity and Related Oxides: Physics and Nanoengineering V, Ivan Bozovic and Davor Pavuna, Eds., 4811, 65-77 (2002)
     
  • Do superconductors have zero resistance in a magnetic field?
    D. R. Strachan, M. C. Sullivan, P. Fournier, S. P. Pai, T. Venkatesan, and C. J. Lobb
    Phys. Rev. Lett. 87, 067007 (2001)