

Phy 632: Problem Set 2
(Due: February 17, 2011)

8). a) Consider a box of 1Ω resistors. Each of these resistors actually has a probability density function for its resistance of $P(r) = \sqrt{\alpha/\pi} \exp(-\alpha(r-1)^2)$. These probabilities are all statistically independent. Suppose N of these resistors are connected in series from point a to b . What is the probability density function for the combined resistance from a to b ? (*Hint:* You should assume that $\alpha \gg 1$ throughout.)

b) Calculate this distribution's characteristic function and lowest three cumulants.

c) Determine the probability density function in the $N \rightarrow \infty$ limit. Does your result agree with the central limit theorem?

d) If you connected the resistors in parallel would your answers to part c) change? Why or why not?

9). A gas contains equal numbers of A particles and B particles. The A particles and B particles, respectively, have energy distributions $P_A(E)$ and $P_B(E)$, where $0 \leq E < \infty$. Given that a particle has an energy larger than E_0 , write an expression for the probability that it is an A particle.

10). A flea jumps randomly along a straight line in steps of length d , positive or negative, starting from the origin. Its probability of making a positive jump is p , that of a negative jump $1-p$.

a) At time $t_n = n$ (so that n is also the total number of steps taken) the flea is at a location $x_k = kd$ with probability $P(n, k)$. Compute $P(n, k)$.

b) Calculate the expectation value of the displacement from the origin and show that the mean square deviation from this value goes as n .

c) Show that, as n and k approach infinity, that your results for parts a) and b) agree with the predictions of the central limit theorem.

11). Kardar, Ch. 2, Problem #8.

12). Kardar, Ch. 2, Problem #9.

13). Determine the set of P_i^* which maximize the entropy S , where

$$S = -k_B \sum_j P_j \ln P_j \quad (1)$$

subject to the constraint that $\sum_j P_j = 1$. Do the P_i^* depend on i ? Repeat the maximization procedure now with both $\sum_j P_j = 1$ and $\sum_j E_j P_j = E$, where E is fixed, as constraints. What is P_i^* now?

14). Consider the complementary error function $\text{erfc}(x)$ defined by

$$\begin{aligned} \text{erfc}(x) &\equiv \frac{2}{\sqrt{\pi}} \int_x^\infty \exp(-t^2) dt \\ &= \frac{2}{\sqrt{\pi}} \exp(-x^2) \int_0^\infty \exp(-2tx) \exp(-t^2) dt \end{aligned} \quad (2)$$

Although the integrand attains its maximum value at an end point, we can still use the ideas of lecture to obtain an asymptotic expansion for large values of x . To proceed, expand $\exp(-t^2)$ in a power series about $t = 0$ and integrate term by term to obtain an asymptotic series for large x . Denoting the partial sum of this series through term n as S_n , compare the exact value of $\text{erfc}(x)$ with S_2 and S_3 for $x = 2$ and $x = 4$ — report the comparison as a percentage difference from the exact value.

Note $\text{erfc}(2)$ is 0.004677735... and $\text{erfc}(4)$ is 0.0000000154173....

15). Consider the classical Hamiltonian $H = p^2/2m + m\omega^2q^2/2$, the harmonic oscillator in one spatial dimension.

- a) Determine the values of p and q at time t , given their values p_0 and q_0 at time $t = 0$.
- b) Show explicitly that the Jacobian $J(t, t')$, as introduced in lecture, is unity for all t, t' and thus that the phase volume is conserved (Liouville theorem).