
Phy 632: Problem Set 5

(Due: March 31, 2011)

25). In this problem we derive the distribution law in three different ensembles.

a) Consider an ensemble of A members in which the energy and particle number of each
member is fixed. This is the microcanonical ensemble. Let Ej denote the energy of a
single-particle state j. Use the method of the most probable distribution to recover the
Gibbs distribution law, namely

Pj =
exp(−βEj)∑
j exp(−βEj)

, (1)

where β is constant. (Appealing to thermodynamics we find β = 1/kBT .)

b) Consider an ensemble of A members in which the particle number of each member is
fixed, but the energy is allowed to vary, subject to the constraint that the total energy
of the ensemble is fixed. This is the canonical ensemble. Use the method of the most
probable distribution to recover the Gibbs distribution law.

c) Consider an ensemble of A members in which the energy and particle number of each
member is allowed to vary, subject to the constraints that the total energy and the total
number of particles in the ensemble are fixed. This is the grand canonical ensemble.
Let ENj be the energy of an ensemble member with N particles in the jth quantum
state, and let aNj denote the number of ensemble members in the state j which contain
exactly N particles. Use the method of the most probable distribution to determine,
ultimately, the distribution law of the grand canonical ensemble, namely,

Pα =
exp(−β(Eα − µNα))∑
α exp(−β(Eα − µNα))

, (2)

where α is a compact notation for N and j.

26). In the Einstein model of a crystalline solid, each atom sits in a three-dimensional
harmonic oscillator potential. The lattice sites on which the atoms sit are all distinguishable.
Moreover, all 3N oscillators possess the same natural frequency ω0. Each oscillator has a
spectrum given by

εn = h̄ω0(n +
1
2
) , (3)

where n = 0, 1, 2, · · ·.

a) Show that the free energy of the solid is given by

F = 3NkBT log [1− exp(−h̄ω0/kBT )] +
3
2
Nh̄ω0 (4)

b) Find the average value of n as a function of temperature, n(T ).



c) Compute the amount of energy required to add one more atom to the solid, without
changing the entropy at fixed volume.

d) Determine the heat capacity C (at fixed volume) as a function of temperature. Compute
C in the low and high temperature limits.

27). A weight of mass W hangs on a chain of N links, each of length l and of negligible
weight. Each link can rotate freely in a vertical plane, so that if θn denotes the deflection
of link n from the direction a plumb bob hangs, then θn ranges from −π to π. Note that
the energy of the system is given by the configuration of its links, E = −Wgl

∑N
n=1 cos θn.

Determine the average energy of the system. Should your result agree with the prediction of
the equipartition theorem in the kBT � gWl limit? Does it?

(Hint: Note that
∫ π
−π dθ exp(z cos θ) = 2πI0(z), where I0(z) is a modified Bessel function of

the first kind. Note I0(z) ∼ ez/
√

2πz[1 + 1
8z +O(z−2)] as z →∞.)

28). Consider a two-dimensional classical harmonic oscillator with the Hamiltonian

H =
1

2m
(p2

x + p2
y) +

k

2
(x2 + y2) . (5)

According to the principle of the equipartition of energy, the average energy will be 2kBT .
Show that upon transformation to polar coordinates the Hamiltonian becomes

H =
1

2m
(p2

r +
p2

θ

r2
) +

k

2
r2 . (6)

What would you predict for the average energy now? Show by direct integration in polar
coordinates that 〈ε〉 = 2kBT . Is there anything wrong here? Why not?

29). Polarized proton targets are useful for a variety of investigations in high energy and
nuclear physics. Consider a “frozen-spin target,” in which the protons in especially prepared
ammonia or butanol targets are polarized by applying a magnetic field at low temperatures.
It is appropriate to model the target as if it were a system of N distinguishable protons. The
proton’s magnetic moment µ can be either aligned (+) or anti-aligned (−) with the magnetic
field H in the positive z direction, so that the energy of the moments is given by E = ±µH.
Note that the “+” is associated with the anti-aligned magnetic moment.

a) If the applied magnetic field is 3.5 T and the target is kept at a temperature of 200 mK
(1mK = 10−3K), then what is the polarization of the protons in the target? Note
that the proton’s magnetic moment is 2.793 µN , where the nuclear magneton µN =
3.152 · 10−14MeV T−1. (The above parameters were taken from H. Dutz et al., “The
Bonn Frozen Spin Target for Experiments with Real Photons,” in High Energy Spin
Physics, Volume 2: Workshops (W. Meyer, E. Steffens, and W. Thiel, eds.), Springer-
Verlag, Berlin, 1991, p.241.))
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b) What are the energy, entropy, and heat capacity (at fixed volume) as a function of
temperature? Sketch them. Can the temperature of this system ever be negative?
What is the physical origin of this behavior?

(Hint: Note N.F. Ramsey, Phys. Rev. 103, 20 (1956).)

30). Consider a system of fixed particle number N at constant T and V . Use the canonical
ensemble to prove that the mean square fluctuations in the energy 〈(∆E)2〉, where 〈(∆E)2〉 ≡
〈(E − 〈E〉)2〉, are given by 〈(∆E)2〉 = kBT 2CV , where CV is the specific heat at constant
volume. If we assume that 〈E〉 is given by 3NkBT/2, that is, that the system is an ideal gas,
then what is the behavior of

√
〈(∆E)2〉/E for large N?

3


