Capacitors in parallel and in series

Test 2 Next Wednesday (Oct 11)

- 1. Chapters 7, 8 (8.1-8.3).
- 2. You are not allowed to check your section number during the test. However, you will get 3 bonus points if you fill in your section number correctly.
- 3. 45 minutes sharp.
- 4. 4 multiple choices and 2 long problems.
- 5. Formula sheet provided.
- Contact me before next Monday for prearrangement if you need special accommodation.

Connecting Capacitors in Parallel

$$C = C_1 + C_2 + C_3 + \cdots + C_N$$

 $Q = Q_1 + Q_2 + Q_3 + \cdots + Q_N$
 $V = V_1 = V_2 = V_3 = \cdots + V_N$

 Potential difference across each individual capacitor is the same: (why?)

$$V = V_1 = V_2 = V_3 = \cdots V_N$$

$$\Rightarrow \frac{Q_1}{C_1} = \frac{Q_2}{C_2} = \frac{Q_3}{C_3} = \cdots \frac{Q_N}{C_N}$$

2. Charge stored in each individual capacitor should be different (unless they have the same capacitance).

Connecting Capacitors in Series

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

$$Q = Q_1 = Q_2 = Q_3 = \dots = Q_N$$

$$V = V_1 + V_2 + V_3 + \dots + V_N$$

1. Charge stored in each individual capacitor is the same: (why?)

$$Q = Q_1 = Q_2 = Q_3 = \dots = Q_N$$

$$\Rightarrow CV = C_1 V_1 = C_2 V_2 = C_3 V_3 = \dots = C_N V_N$$

2. Potential difference across each individual capacitor should be different (unless they have the same capacitance).

Class 19: Electric current and resistance, Ohm's law

Current

The direction of the current is the direction in which positive charges flow when free to do so. If dQ is the amount of charge passes through A in a short time interval dt, current is defined as:

$$I = \frac{dQ}{dt}$$

Units of current:

Ampere (A)
$$\equiv$$
 C/s

Electrically these two cases produce the same current, but they can be distinguished with a magnetic field.

Drifting velocity v_d

At any instant, electrons contributing to the current is moving very fast at about 10⁶ m/s.

They also make collision with atoms and impurities very often, about 10¹⁴ times per second.

As a result, electrons drift very slowly along the electric field direction with a drifting velocity $v_d \sim 10^{-4}$ m/s.

Microscopic Model of Current

How many electron will pass the area A in a short time interval dt?

If n is the number of electrons per unit volume.

Number of electrons pass through area A = $n \times volume = n(v_d dt)A$

If the charge of electron is e.

Charge pass through area A is $dQ = ne(v_d dt)A$

$$\therefore I = \frac{dQ}{dt} \implies I = nev_d A$$

Current Density and Ohm's Law (physics version)

Current density

$$J = \frac{I}{A}$$

Ohm's Law (physics version)

$$\vec{J} \propto \vec{E} \implies \vec{J} = \sigma \vec{E}$$

$$\vec{J} = \frac{1}{\rho} \vec{E}$$

- 1. σ is called conductivity. Do not confuse this with the surface charge density.
- 2. ρ is called resistivity. Do not confuse this with the volumetric charge density.
- 3. σ and ρ represent the same information,
- 4. σ and ρ are properties of materials.

Ohm's Law (electronics version)

A potential difference $\Delta V = V_b - V_a$ maintained across the conductor sets up an electric field $\vec{\mathbf{E}}$, and this field produces a current I that is proportional to the potential difference.

 $J \rightarrow I$ and $E \rightarrow V$ Ohm's Law:

$$J = \frac{1}{\rho} E \implies \frac{I}{A} = \frac{1}{\rho} \cdot \frac{\Delta V}{\ell}$$

$$\Rightarrow \Delta V = \left(\frac{\rho \ell}{A}\right) I$$

$$\Rightarrow \Delta V = I R$$

where

$$R = \frac{\rho \ell}{A}$$

- 1. R is called the resistance.
- 2. Units of resistance is Ohm (Ω). $\Omega \equiv V/A$