Circular motion and Gravitational Law

Gravitational attraction between a point particle and a sphere (outside)

Always attractive!

Gravitational attraction between a point particle and a sphere (inside)

Only masses inside dotted circle (M') count!

Assuming uniform density

$$M' = \frac{M}{\frac{4}{3}\pi R^3} \cdot \frac{4}{3}\pi r^3 = M\left(\frac{r}{R}\right)^3$$

$$\therefore F = G \frac{Mm}{r^2} \cdot \left(\frac{r}{R}\right)^3 = G \frac{Mm}{R^3} \cdot r$$

Class 2: Energy and Conservative Law

Kinetic Energy

$$T = \frac{1}{2}mv^2$$

Dot product between two vectors

$$\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = |\vec{A}| |\vec{B}| \cos \theta$$

$$\sin 0^{\circ} = 0$$
 $\sin 90^{\circ} = 1$
 $\cos 0^{\circ} = 1$ $\cos 90^{\circ} = 0$

— You should know this.

Work done

Work done by F

$$= W_{i \to f} = \int_{i}^{f} \vec{F} \cdot d\vec{r}$$

$$\int_{i}^{f} \vec{F} \cdot d\vec{r} = -\int_{f}^{i} \vec{F} \cdot d\vec{r}$$

$$\Rightarrow W_{i \to f} = -W_{f \to i}$$

Only along the same path.

Conservation of Energy -- pristine form

This is *always* correct:

Change in kinetic energy

= Total work done by the individual forces

$$\Delta KE = (KE)_{f} - (KE)_{i}$$

$$= \sum_{n} \left(\int_{i}^{f} \vec{F}_{n} \cdot d\vec{r} \right)$$

$$\Delta KE = \Sigma W_{i \to f}$$

Conservative Force

If F is a function of position: $\vec{F}(\vec{r})$

1. If $W_{i\rightarrow f}$ is path independent, F is conservative.

2. If $\vec{F}(\vec{r})$ is conservative, $W_{i\rightarrow i} = 0$ (why?)

Since the integral $W = \int \vec{F} \cdot d\vec{r}$ is path independent, we can "prepackage" the integration in general mathematical form.

Potential Energy U

If $\vec{F}(\vec{r})$ is conservative, the potential energy change ΔU is defined as the <u>negative</u> work done by the force $\vec{F}(\vec{r})$, which is path independent.

$$\Delta U = -\int_{i}^{f} \vec{F}(\vec{r}) \cdot d\vec{r}$$

Pay attention to the negative sign: so we can move this term to the left hand side of the pristine conservation of energy equation $\Delta KE = \Sigma W_{i \to f}$ and becomes positive!

Conservation of Energy

Pristine form:

Change in kinetic energy = Total work done by the individual forces

- ⇒ Change in kinetic energy = Total work done by conservative forces + Total work done by non-conservative forces
- $\Rightarrow \Delta KE = -\Delta U + Total work done by non-conservative forces$
- \Rightarrow Δ KE + Δ U = Total work done by non-conservative forces

Secondary form

$$\Rightarrow \Delta KE + \Delta U = W_{\text{non-conservative forces}}$$

This is still *always* correct!

If there is no non-conservative forces:

$$\Delta KE + \Delta U = 0 \Leftrightarrow KE + U = constant$$
 $\Leftrightarrow (KE)_i + U_i = (KE)_f + U_f$
Close system form

This is correct only if there is no non-conservative force.