Energy and Conservative Law

Conservation of Energy

Pristine form:

Change in kinetic energy = Total work done by the individual forces

- ⇒ Change in kinetic energy = Total work done by conservative forces + Total work done by non-conservative forces
- $\Rightarrow \Delta KE = -\Delta U + Total work done by non-conservative forces$
- \Rightarrow Δ KE + Δ U = Total work done by non-conservative forces

Secondary form

$$\Rightarrow \Delta KE + \Delta U = W_{\text{non-conservative forces}}$$

This is still *always* correct!

If there is no non-conservative forces:

$$\Delta KE + \Delta U = 0 \Leftrightarrow KE + U = constant$$
 $\Leftrightarrow (KE)_i + U_i = (KE)_f + U_f$
Close system form

This is correct only if there is no non- conservative force.

Three common conservative forces

Spring

Hooke's Law:

$$F = -kx$$

$$U = \frac{1}{2} kx^2$$

(U at natural length = 0)

Earth surface

$$F = -mg$$

$$(U = 0 \text{ at } y = 0)$$

Uniform spherical object

For r > a only:

$$|F(r)| = G \frac{Mm}{r^2}$$

$$U(r) = -G \frac{Mm}{r}$$

$$U(\infty) = 0$$

Class 3: Torque and rotational motion

cross product between two vectors

Direction:

 $\vec{\mathbf{B}}$

Ā

Magnitude:

$$|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \hat{i} \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} - \hat{j} \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} + \hat{k} \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix}$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

A common symbol

 \otimes or \times A vector perpendicular and pointing into the screen /paper.

OrA vector perpendicular and pointing out of the screen /paper.

Torque

$$\tau = \vec{r} \times \vec{F}$$

Torque depends on:

- (i) at what point of the rigid body the force is acting on.
- (ii) how we choose the origin.