Class 34. Force between two currents and solenoid

0	3
1-5	0
6-10	0
11-15	0
16-20	0
21-25	0
26-30	0
31-35	2
36-40	0
41-45	0
46-50	2
51-55	3
56-60	4
61-65	8
66-70	4
71-75	13
76-80	11
81-85	21
86-90	26
91-95	18
96-100	12

Bin

students

		# students
92-100	Α	26
80-91	В	54
55-79	С	38
36-54	D	4
0-35	E	5
		127 students

Total number of students: 127

Class average: 79.2

Sample standard deviation: 18.5

Top 1/4 percentile: 90

Median: 84

Top ¾ percentile: 73

Magnetic field due to a long wire

Want to calculate the magnetic field B at point P.

By symmetry argument, B is in the plane of the paper (infinite long wire), has the same magnitude for all points on the dotted circular loop (azimuthal symmetry), and tangent to the circular loop (so $\cos \theta = 1$).

$$\therefore \oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mathbf{B} \cdot 2\pi \mathbf{r}$$

Ampere's Law: $\oint \vec{B} \cdot d\vec{s} = \mu_0 I \Rightarrow B \cdot 2\pi r = \mu_0 I$

$$\Rightarrow B = \frac{\mu_0 I}{2\pi r}$$

Magnetic Force Between Two Parallel Long Wires

Magnetic field at point P due to I₁:

$$B = \frac{\mu_0 I_1}{2\pi r}$$

If another current I₂ parallel to I₁ is passing through point P, it will experience a force because of the field there.

Magnetic Force Between Two Parallel Long Wires

Magnetic field at point P due to I₁:

$$B = \frac{\mu_0 I_1}{2\pi r}$$

If another current I₂ parallel to I₁ is passing through point P, it will experience a force because of the field there.

$$\vec{F}_{B} = I_{2}\vec{L} \times \vec{B} \implies F_{B} = I_{2}BL \sin 90^{\circ} = I_{2}BL$$

$$\Rightarrow F_{B} = I_{2}L \cdot \frac{\mu_{0}I_{1}}{2\pi r}$$

$$\Rightarrow \frac{F_{B}}{L} = \frac{\mu_{0}I_{1}I_{2}}{2\pi r}$$

Force is attractive if the two currents are in the same direction, repulsive if the two currents are in opposite direction.

Solenoid

If n = number of turns per unit length

$$\therefore \oint \vec{B} \cdot d\vec{s} = B \cdot L$$

Ampere's Law:
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I \Rightarrow B \cdot L = \mu_0 (nL) I$$
$$\Rightarrow B = \mu_0 n I$$

Note that B is proportional to the number of turns per unit length, but not the total number of turns.