## Solenoid

#### Solenoid



If n = number of turns per unit length

$$\therefore \oint \vec{B} \cdot d\vec{s} = B \cdot L$$

Ampere's Law: 
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I \Rightarrow B \cdot L = \mu_0 (nL) I$$
$$\Rightarrow B = \mu_0 n I$$

Note that B is proportional to the number of turns per unit length, but not the total number of turns.



#### **Toroid**





$$\therefore \oint \vec{B} \cdot d\vec{s} = B \cdot 2\pi r$$

Ampere's Law:

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I \Rightarrow B \cdot 2\pi r = \mu_0 (n \cdot 2\pi r) I$$

$$\Rightarrow B = \mu_0 \left(\frac{N}{2\pi r}\right) I$$

N = Total number of turns

## Structure of Equations

| E                                                                                 | В                                                                                     |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Interaction between charges                                                       | Interaction between moving charges/ currents                                          |  |
| Coulomb's Law $d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \hat{r}$     | Biot-Savart Law $d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2}$ |  |
| Gauss's Law $\varepsilon_0 \oiint \vec{E} \cdot d\vec{A} = q_{in}$                | Gauss's Law (Conceptual) $\iint \vec{B} \cdot d\vec{A} = 0$                           |  |
| Gauss's Law $\varepsilon_0 \oiint \vec{E} \cdot d\vec{A} = q_{in}$                | Ampere's Law (Calculation) $\oint \vec{B} \cdot d\vec{s} = \mu_0 \ I_{in}$            |  |
| Parallel capacitor gives uniform E field $\vec{E} = \frac{\sigma}{\varepsilon_0}$ | Solenoid gives uniform B field $\vec{\mathrm{B}} = \mu_0 \mathrm{nI}$                 |  |

#### Maxwell's Equations

Maxwell's equations describe all the properties of electric and magnetic fields and there are four equations in it:

|                          | Integral form                                                                   | Differential form (optional)                          | Name of equation                |
|--------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|
| 1 <sup>st</sup> Equation | $\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = Q_{\text{enclosed}}$              | $\varepsilon_0 \nabla \cdot \vec{\mathbf{E}} = \rho$  | Electric<br>Gauss's Law         |
|                          | $\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$                            | $\nabla \cdot \vec{\mathbf{B}} = 0$                   | Magnetic<br>Gauss's Law         |
|                          | $\oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 \mathbf{I}_{\text{enclosed}}$ | $ abla 	imes ec{\mathbf{B}} = \mu_0 \vec{\mathbf{J}}$ | Ampere's<br>Law<br>(Incomplete) |
|                          | Not yet2 <sup>nd</sup> Equation                                                 |                                                       |                                 |

Lorentz force equation is not part of Maxwell's equations. It describes what happens when charges are put in an electric or magnetic fields:

Equation 
$$\vec{F} = (q\vec{E} + \vec{v} \times \vec{B})$$

Class 35: Faraday's Law

Part I – Maxwell's 4<sup>th</sup> Equation

### Imaginary loop in an electric and magnetic field



We will do two types of integrals for the closed loop:

1. Magnetic flux

$$\Phi_{\rm B} = \int \vec{\bf B} \cdot d\vec{\bf A}$$

Note that  $\Phi_B \neq 0$  (Maxwell's 2<sup>nd</sup> equation) because this is not a 3 dimensional closed surface.

2. Electromotive force (emf,  $\varepsilon$ )

$$\varepsilon_{\text{loop}} = \oint_{\text{loop}} \vec{E} \cdot d\vec{s}$$

 $\epsilon_{loop}$  = 0 for electrostatic case. Note that  $\epsilon_{loop}$  = 0 does not mean E =0.

## Example



What is the magnetic flux through the rectangular loop?

#### Electric Potential V

If  $\vec{E}(\vec{r})$  is conservative, the potential difference  $\Delta V$  is defined as the *negative* work done by the force  $\vec{F}(\vec{r})$  (which is path independent), divided by the charge (of the test charge).



Pay attention to the negative sign

$$\Delta V = \frac{\Delta U}{q} = -\int_{i}^{f} \vec{E}(\vec{r}) \cdot d\vec{r}$$

 $\Lambda V=0$  for closed

Unit of electric potential = J/C =V

# Warning

In the discussion here we will assume electric (force) field is a conservative (force) field. This will not be the case if there is a changing magnetic field. We will come to this point later in the semester.

## Faraday's Law – Part 1 (Maxwell's 4<sup>th</sup> equation)



A changing magnetic field will produce an electric field and they have the following relationship:

$$\varepsilon_{\mathrm{loop}} = -\frac{\partial}{\partial t} \Phi_{\mathrm{B}}$$

or 
$$\oint_{loop} \vec{E} \cdot d\vec{s} = -\frac{\partial}{\partial t} \left( \int \vec{B} \cdot d\vec{A} \right)$$

#### Notes:

- 1. We find a new way to produce an electric field.
- 2.  $\varepsilon_{loop}$  of electric fields produced this way does not equal to 0.