Class 38 Power generator, eddy current, and self inductance

Faraday's Law for motion emf: Example III

Figure 31.3 A conducting loop that encloses an area A in the presence of a uniform magnetic field \vec{B} . The angle between \vec{B} and the normal to the loop is θ .

$$\varepsilon_{\text{loop}} = -\frac{d}{dt}\Phi_{\text{B}}$$

or
$$\oint_{loop} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \left(\int_{loop} \vec{B} \cdot d\vec{A} \right)$$

Notes:

- 1. ϵ_{loop} does not equal to 0 any more if $d\Phi_{\rm B}/{\rm dt} \neq 0$
- 2. There are two ways to make $d\Phi_B/dt \neq 0$:
 - (i) Changing B
 - (ii) Changing A (loop shape)

Faraday's Law for changing θ : Generator

Figure 31.18 A cutaway view of a loop enclosing an area A and containing N turns, rotating with constant angular speed ω in a magnetic field. The emf induced in the loop varies sinusoidally in time.

$$\theta = \omega t$$

 $\theta = 0$ at $t = 0$

$$\oint_{\text{loop}} \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \left(\int_{\text{B}} \vec{B} \cdot d\vec{A} \right)$$

$$= -\frac{d}{dt} \left(\int_{\text{B}} \vec{B} \cdot N dA \cos \omega t \right)$$

$$= -\frac{d}{dt} \left(NBA \cos \omega t \right)$$

$$= NBA \omega \frac{d}{dt} \cos \omega t$$

$$\therefore \varepsilon = NBA\omega \sin \omega t$$

AC and DC Generators

Eddy Current

When a conductor moves in an inhomogeneous magnetic field, the induced emf will produce current flow in the conductor, called Eddy current.

Lenz's Law: The Eddy current will in turn produce a magnetic force in opposite direction to the velocity, like friction.

Electric motor and back emf

An electric motor behaves like a generator as it is rotating. This will generate an emf in opposite to the applied voltage, called back emf.

$$V = E_b + IR$$

Where R is the resistance of the windings. When the motor starts turning, $E_b = 0$ and all power is dissipated as heat I_2R (wasted). When the motor is in full speed, mechanical power of the motor is IE_b and the power of the wasted heat will drop to $(V-E_b)^2/R$.