Please Do Course Evaluation

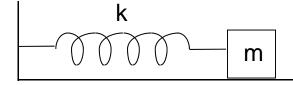
LC and RLC Circuits

Oscillation - Spring

Potential energy ↔ Kinetic energy

$$\frac{1}{2}$$
kx²

$$\frac{1}{2}$$
mv²



Conservation of energy:

$$\frac{1}{2}kx^{2} + \frac{1}{2}mv^{2} = constant$$

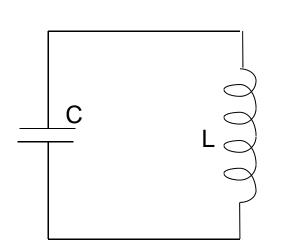
$$= \frac{1}{2}kA^{2} \text{ or } \frac{1}{2}mv_{max}^{2}$$

Equation of motion:
$$m \frac{d^2}{dt^2} x = -kx$$

Solution:
$$x = A \sin(\omega t + \phi)$$
 with $\omega = \sqrt{\frac{k}{m}}$

Oscillation – LC circuit

Electric energy ← Magnetic energy



$$\frac{1}{2} \frac{Q^2}{C}$$

$$\frac{1}{2}LI^2$$

Conservation of energy:

Conservation of energy:

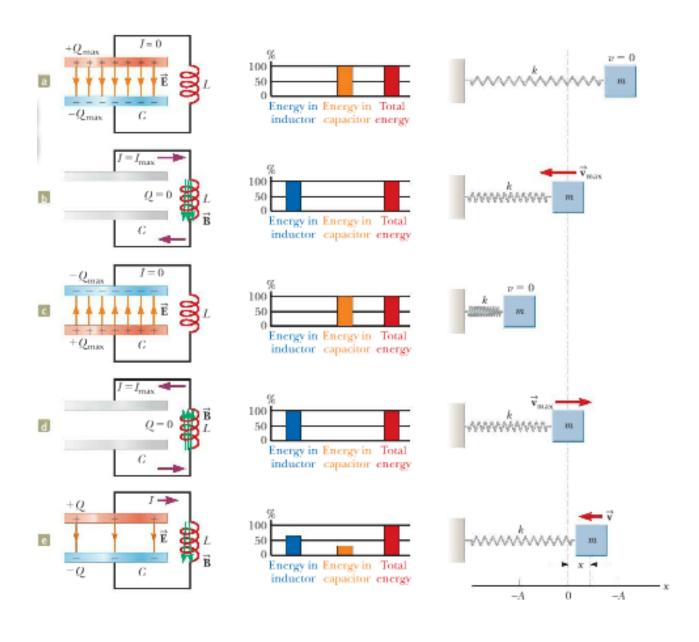
$$\frac{1}{2} \frac{1}{C} Q^{2} + \frac{1}{2} LI^{2} = constant$$

$$= \frac{1}{2} \frac{1}{C} Q_{max}^{2} \text{ or } \frac{1}{2} LI_{max}^{2}$$

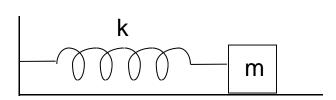
Kirchhoff's rule:
$$-L\frac{dI}{dt} = \frac{1}{C}Q \implies \frac{d^2Q}{dt^2} = -\frac{1}{C}Q$$

Solution: Solve the differential equation!

Similarity between Spring Oscillation and LC Oscillation I



Similarity between Spring Oscillation and LC Oscillation II



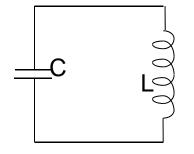
Potential energy ↔ Kinetic energy

$$\frac{1}{2}kx^2$$

$$\frac{1}{2}$$
mv²

Newton's Law

$$m\frac{d^2}{dt^2}x = -kx$$



Electric energy ← Magnetic energy

$$\frac{1}{2} \frac{Q^2}{C}$$

$$\frac{1}{2}LI^2$$

Kirchhoff's rule:

$$-L\frac{dI}{dt} = \frac{1}{C}Q \implies \frac{d^2Q}{dt^2} = -\frac{1}{C}Q$$

Potential energy

$$\frac{1}{2}kx^2$$

$$\frac{1}{2}mv^2$$

Electrical energy

$$\frac{1}{2} \frac{Q^2}{C}$$

Kinetic energy

$$\frac{1}{2}LI^2$$

Spring constant k

$$\frac{1}{C}$$

Mass m

Displacement x

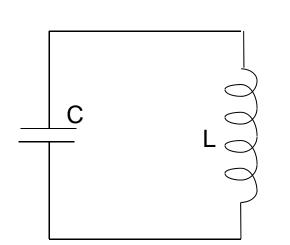
$$v = \frac{dx}{dt}$$

$$I = \frac{dQ}{dt}$$

Class 42 More LC Circuiturrrent

Oscillation – LC circuit

Electric energy ← Magnetic energy



$$\frac{1}{2} \frac{Q^2}{C}$$

$$\frac{1}{2}LI^2$$

Conservation of energy:

$$\frac{1}{2}\frac{1}{C}Q^2 + \frac{1}{2}LI^2 = constant$$

Kirchhoff's rule:
$$-L\frac{dI}{dt} = \frac{1}{C}Q \implies L\frac{d^2Q}{dt^2} = -\frac{1}{C}Q$$

Solution:

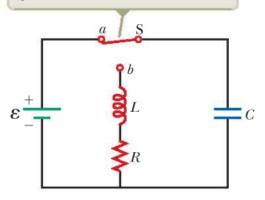
$$x = A \sin (\omega t + \phi) \text{ with } \omega = \sqrt{\frac{k}{m}}$$

Q = A sin
$$(\omega t + \phi)$$
 with $\omega = \sqrt{\frac{1}{LC}} = \frac{1}{\sqrt{LC}}$

RLC circuit

RLC circuit

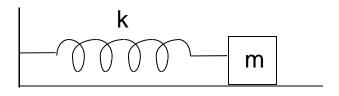
The switch is set first to position a, and the capacitor is charged. The switch is then thrown to position b.



ACTIVE FIGURE 32.15

A series RLC circuit.

Damped Oscillation



Friction = -bv

Kirchhoff's rule:

$$0 = \frac{Q}{C} + IR + L \frac{dI}{dt} \qquad (I = \frac{d}{dt}Q)$$

$$\Rightarrow L \frac{d^2}{dt^2}Q + R \frac{d}{dt}Q + \frac{Q}{C} = 0$$

$$\Rightarrow \Delta = \frac{Q}{dt} + IR + L \frac{dI}{dt} \qquad (I = \frac{d}{dt}Q)$$

Equation of motion:

$$m\frac{d^{2}}{dt^{2}}x = -bv - kx \qquad (v = \frac{d}{dt}x)$$

$$\Rightarrow m\frac{d^{2}}{dt^{2}}x + b\frac{d}{dt}x + kx = 0$$

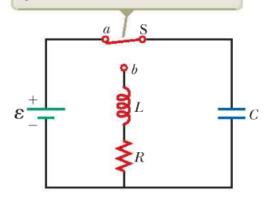
RLC circuit and Mechanical Oscillation

RLC circuit	Mechanical
Q	X
I = dQ/dt	v = dx/dt
С	1/k
R	b
L	m
Magnetic energy ½LI ²	Kinetic energy ½mv²
Electrical energy ½(1/C)Q ²	Potential energy ½kx²

RLC circuit

RLC circuit

The switch is set first to position a, and the capacitor is charged. The switch is then thrown to position b.



ACTIVE FIGURE 32.15

A series RLC circuit.

Kirchhoff's rule:

$$0 = \frac{Q}{C} + IR + L \frac{dI}{dt} \qquad (I = \frac{d}{dt}Q)$$

$$\Rightarrow L \frac{d^2}{dt^2}Q + R \frac{d}{dt}Q + \frac{Q}{C} = 0$$

Solution:

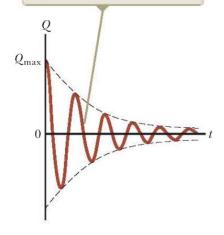
$$Q(t) = Q_0 e^{-\frac{R}{2L}t} \cos \omega_d$$

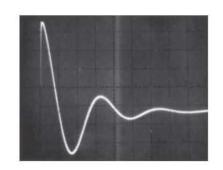
$$\omega_{\rm d} = \sqrt{\frac{1}{\rm LC} - \left(\frac{\rm R}{\rm 2L}\right)^2}$$

$$\frac{1}{LC} - \left(\frac{R}{2L}\right)^2 \quad \begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$$

under damped critically damped over damped

The Q-versus-t curve represents a plot of Equation 32.31.





$$Q(t) = Q_0 e^{-\frac{R}{2L}t} \cos \omega_d$$

$$\omega_{\rm d} = \sqrt{\frac{1}{\rm LC} - \left(\frac{\rm R}{2\rm L}\right)^2}$$

 ω_{d} real: under damped ω_{d} = 0: critically damped ω_{d} imaginary: overdamped

