Please Do Course Evaluation

RLC circuit

RLC circuit

The switch is set first to position a, and the capacitor is charged. The switch is then thrown to position b.

ACTIVE FIGURE 32.15

A series RLC circuit.

Kirchhoff's rule:

$$0 = \frac{Q}{C} + IR + L \frac{dI}{dt} \qquad (I = \frac{d}{dt}Q)$$

$$\Rightarrow L \frac{d^2}{dt^2}Q + R \frac{d}{dt}Q + \frac{Q}{C} = 0$$

Solution:

$$Q(t) = Q_0 e^{-\frac{R}{2L}t} \cos \omega_d$$

$$\omega_{\rm d} = \sqrt{\frac{1}{\rm LC} - \left(\frac{\rm R}{\rm 2L}\right)^2}$$

$$\frac{1}{LC} - \left(\frac{R}{2L}\right)^2 \quad \begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$$

under damped critically damped over damped

The Q-versus-t curve represents a plot of Equation 32.31.

$$Q(t) = Q_0 e^{-\frac{R}{2L}t} \cos \omega_d$$

$$\omega_{\rm d} = \sqrt{\frac{1}{\rm LC} - \left(\frac{\rm R}{2\rm L}\right)^2}$$

 ω_{d} real: under damped ω_{d} = 0: critically damped ω_{d} imaginary: overdamped

Class 43 Displacement currrent

Maxwell's Equations

Maxwell's equations describe all the properties of electric and magnetic fields and there are four equations in it:

	Integral form	Differential form (optional)	Name of equation
1 st Equation	$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = Q_{\text{enclosed}}$	$\varepsilon_0 \nabla \cdot \vec{\mathbf{E}} = \rho$	Electric Gauss's Law
	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$	$\nabla \cdot \vec{\mathbf{B}} = 0$	Magnetic Gauss's Law
	$\oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 \mathbf{I}_{\text{enclosed}}$	$ abla imes ec{\mathrm{B}} = \mu_0 ec{\mathrm{J}}$	Ampere's Law (Incomplete)
	$\underbrace{\oint_{\varepsilon} \vec{E} \cdot d\vec{\ell}}_{\varepsilon} = -\frac{\partial}{\partial t} \underbrace{\oint_{\Phi_{B}} \vec{B}(t) \cdot d\vec{A}}_{\Phi_{B}}$	$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$	

Lorentz force equation is not part of Maxwell's equations. It describes what happens when charges are put in an electric or magnetic fields:

$$\vec{F} = (q\vec{E} + \vec{v} \times \vec{B})$$

Slide #6 of Class 36

Revisit Ampere's Law

The conduction current I in the wire passes only through S_1 , which leads to a contradiction in Ampère's law that is resolved only if one postulates a displacement current through S_2 .

For DC, I=0 and B=0, so there is no problem.

If I is changing with time, $I \neq 0$ (except at the gap) and there will be a magnetic field (changing with time also).

If the gap d is very small $(d \rightarrow 0)$, there should be magnetic field everywhere surrounding the wire even though there is no physical current through the gap.

The problem now is:

For surface
$$S_1$$
: $\oint_{Path\ P} \vec{B} \cdot d\vec{s} = \mu_0 I_{Enclosed\ by\ S_1} = \mu_0 I$

For surface
$$S_2$$
: $\oint_{Path P} \vec{B} \cdot d\vec{s} = \mu_0 I_{Enclosed by S_2} = 0$

How to reconcile the difference?

Maxwell's proposal

We can introduce an imaginary current, called displacement current, I_d within the gap so the current now looks like continuous.

With this displacement current:

For surface
$$S_1: \oint_{P} \vec{B} \cdot d\vec{S} = \mu_0 I_{\text{by } S_1} = \mu_0 I$$

For surface
$$S_1$$
: $\oint_P \vec{B} \cdot d\vec{S} = \mu_0 I_{\text{Enclosed} \atop \text{by } S_1} = \mu_0 I$
For surface S_2 : $\oint_P \vec{B} \cdot d\vec{S} = \mu_0 I_{\text{Enclosed} \atop \text{by } S_2} = \mu_0 I_d = \mu_0 I$

Ampere's Law now becomes:

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = \mu_0 (\mathbf{I}_{\text{Enclosed}_1} + \mathbf{I}_d)$$

Displacement current

But at the end what is a displacement current?

It is not a real current due to motion of charges within the gap, so we have to relate it to something that really exists in the gap: electric field.

$$I_{d} = I = \frac{dq}{dt} = C \frac{dV}{dt} \qquad (q = CV)$$

$$= Cd \frac{dE}{dt} \qquad (V = Ed)$$

$$= \frac{\varepsilon_{0}A}{d} \cdot d \frac{dE}{dt} \qquad (C = \frac{\varepsilon_{0}A}{d})$$

$$= \varepsilon_{0} \frac{d(EA)}{dt}$$

$$= \varepsilon_{0} \frac{d\Phi_{E}}{dt}$$

Abstraction

$$I_{d} = \varepsilon_{0} \frac{d\Phi_{E}}{dt}$$

We got this idea from parallel plate capacitor. We expand this and say this is generally true for any geometry and Ampere's Law now becomes:

$$\oint \vec{B} \cdot d\vec{S} = \mu_0 (I_{\text{Enclosed}} + \varepsilon_0 \frac{d\Phi_E}{dt})$$

$$= \mu_0 (I_{\text{Enclosed}} + \varepsilon_0 \frac{d}{dt} \int \vec{E} \cdot d\vec{A})$$

Maxwell's Equations

Maxwell's equations describe all the properties of electric and magnetic fields and there are four equations in it:

	Integral form	Differential form (optional)	Name of equation
1 st Equation	$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = Q_{\text{enclosed}}$	$\varepsilon_0 \nabla \cdot \vec{\mathbf{E}} = \rho$	Electric Gauss's Law
	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$	$\nabla \cdot \vec{\mathbf{B}} = 0$	Magnetic Gauss's Law
	$\oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 \mathbf{I}_{\text{enclosed}}$	$ abla imes ec{\mathrm{B}} = \mu_0 ec{\mathrm{J}}$	Ampere's Law (Incomplete)
	$\underbrace{\oint_{\varepsilon} \vec{E} \cdot d\vec{\ell}}_{\varepsilon} = -\frac{\partial}{\partial t} \underbrace{\oint_{\Phi_{B}} \vec{B}(t) \cdot d\vec{A}}_{\Phi_{B}}$	$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$	

Lorentz force equation is not part of Maxwell's equations. It describes what happens when charges are put in an electric or magnetic fields:

$$\vec{F} = (q\vec{E} + \vec{v} \times \vec{B})$$

Slide #6 of Class 36

Maxwell's Equations

Maxwell's equations describe all the properties of electric and magnetic fields and there are four equations in it:

	Integral form	Differential form (optional)	Name of equation
1 st Equation	$\varepsilon_0 \oint \vec{E} \cdot d\vec{A} = Q_{\text{enclosed}}$	$\varepsilon_0 \nabla \cdot \vec{\mathbf{E}} = \rho$	Electric Gauss's Law
	$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$	$\nabla \cdot \vec{\mathbf{B}} = 0$	Magnetic Gauss's Law
	$\oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 (\mathbf{I}_{\text{enclosed}} + \varepsilon_0 \frac{\partial}{\partial t} \int \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}})$	$\nabla \times \vec{\mathbf{B}} = \mu_0 (\vec{\mathbf{J}} + \varepsilon_0 \frac{\partial}{\partial t} \vec{\mathbf{E}})$	Ampere's Law (Incomplete)
	$ \underbrace{\oint_{\varepsilon} \vec{E} \cdot d\vec{\ell}}_{\varepsilon} = -\frac{\partial}{\partial t} \underbrace{\oint_{\Phi_{B}} \vec{B}(t) \cdot d\vec{A}}_{\Phi_{B}} $	$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial \mathbf{t}}$	

Lorentz force equation is not part of Maxwell's equations. It describes what happens when charges are put in an electric or magnetic fields:

$$\vec{F} = (q\vec{E} + \vec{v} \times \vec{B})$$

Slide #6 of Class 36

Three different forms of Maxwell's Equations

Linearly polarized electromagnetic Waves

ACTIVE FIGURE 34.5

Electric and magnetic fields of an electromagnetic wave traveling at velocity \vec{c} in the positive x direction. The field vectors are shown at one instant of time and at one position in space. These fields depend on x and t.

Linearly polarized waves

The wave is traveling in the $\overrightarrow{E} \times \overrightarrow{B}$ direction.

Applying Maxwell's Third Equation to Plane Electromagnetic Waves

Figure 34.6 At an instant when a plane wave moving in the positive x direction passes through a rectangular path of width dx lying in the xy plane, the electric field in the y direction varies from $\vec{\mathbf{E}}(x)$ to $\vec{\mathbf{E}}(x+dx)$.

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d}{dt} \oiint \vec{B} \cdot d\vec{A}$$

$$\oint \vec{E} \cdot d\vec{s} = E(x + dx)\ell + 0 - E(x)\ell + 0$$

$$= \ell [E(x + dx) - E(x)]$$

$$= \ell \frac{\partial E}{\partial x} \cdot dx$$

$$-\frac{d}{dt} \oiint \vec{B} \cdot d\vec{A} = -\frac{\partial}{\partial t} (\vec{B} \cdot \ell dx)$$

$$= -\ell \frac{\partial B}{\partial t} \cdot dx$$

$$\therefore \frac{\partial E}{\partial x} = -\frac{\partial B}{\partial t}$$

Applying Maxwell's Fourth Equation to Plane Electromagnetic Waves

Figure 34.7 At an instant when a plane wave passes through a rectangular path of width dx lying in the xz plane, the magnetic field in the z direction varies from $\overrightarrow{\mathbf{B}}(x)$ to $\overrightarrow{\mathbf{B}}(x+dx)$.

$$\begin{split} \oint \vec{B} \cdot d\vec{s} &= \mu_0 (I_{in} + \varepsilon_0 \, \frac{d}{dt} \oiint \, \vec{E} \cdot d\vec{A}) \quad (I_{in} = 0) \\ \oint \vec{B} \cdot d\vec{s} &= B(x)\ell + 0 - B(x + dx)\ell + 0 \\ &= -\ell [B(x + dx) - B(x)] \\ &= -\ell \frac{\partial B}{\partial x} \cdot dx \\ \mu_0 \varepsilon_0 \, \frac{d}{dt} \oiint \, \vec{E} \cdot d\vec{A} = \varepsilon_0 \mu_0 \, \frac{\partial}{\partial t} (E \cdot \ell \, dx) \\ &= \varepsilon_0 \mu_0 \ell \, \frac{\partial E}{\partial t} \cdot dx \\ \therefore \, -\frac{\partial B}{\partial x} &= \varepsilon_0 \mu_0 \, \frac{\partial E}{\partial t} \end{split}$$