Class 6. More electric Fields

Concept of Fields

$$F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2} \qquad \qquad F = \frac{1}{4\pi\varepsilon_0} \frac{Qq}{r^2}$$

Why these two charges can experience a force from the other even though they are not in physical contact?

Concept of Fields

The charges that give rise to the electric fields are called the *source* charges.

Charge \Rightarrow Electric field

Mass ⇒ Gravitational field

Concept of Fields

Let us call the charges that are being placed in an electric field to experience the force the *external* charges. In the above figure, Q is the source charge and q is the external charge.

Electric field E due to source charge Q

$$F = \left(\frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}\right) q$$
$$= q E$$

When another charge is put in the field, it will experience an electric force. The force depends on the charge and the electric field at that point.

The problem is now split into two:

- 1. Calculate the electric field due to the source charges.
- 2. Calculate the force acting on the external charges.