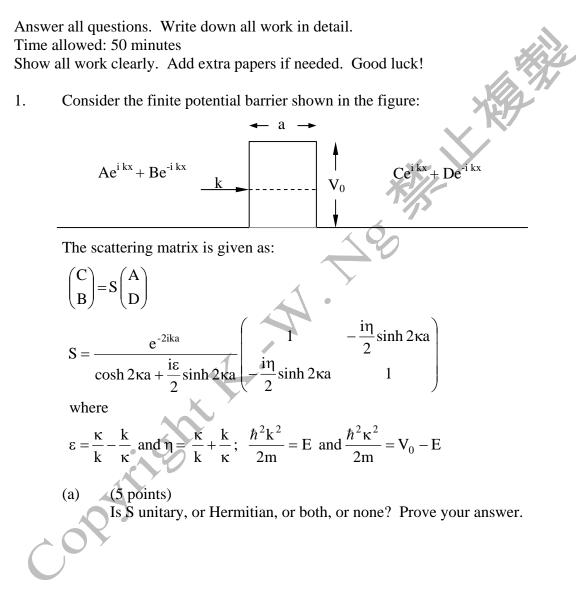
University of Kentucky Department of Physics and Astronomy

PHY 520 Introduction to Quantum Mechanics Fall 2002 Test 2



(b) (10 points) Calculate the transmission probability $|T|^2$. Further simplify your answer by assuming $|T| \ll 1$.

copyright

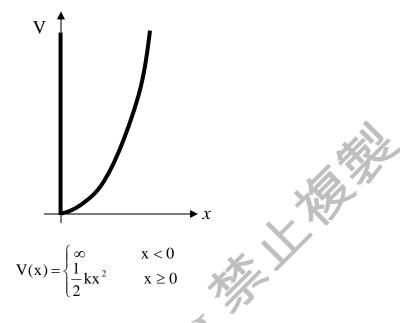
KAT- HARA

(c) (10 points)

copyright

An electron with energy E= 1eV is incident upon the potential barrier with $V_0 = 2eV$. About how wide must the barrier be so that the transmission probability is (i) 10^{-3} , (ii) 10^{-2} ? It is given the mass and charge of electrons are 9.11×10^{-27} g and 1.6×10^{-19} C respectively. Also, $\hbar = 1.055 \times 10^{-27}$ erg - s.

2. Consider a semi-simple harmonic potential as shown in the figure:



(a) (7 points)

Which of the following CANNOT be an eigenfunction (for $x \ge 0$) of this potential? Explain your reasoning carefully. In all these equations, $y = (2\pi m\omega/h)^{1/2}$ and $\omega = (k/m)^{1/2}$. A is kind of normalization constant to be determined.

(i)
$$\Psi(x) = A(32y^5 - 160y^3 + 129y) \exp(y^2/2)$$

(ii)
$$\Psi(x) = A (16y^4 - 48y^2 + 12) \exp(-y^2/2)$$

(ii)
$$\Psi(x) = A (32y^5 + 160y^3 + 129y) \exp(-y^2/2)$$

(iv)
$$\Psi(x) = A \exp(-y^2/2)$$

(v)
$$\Psi(x) = A(2y) \exp(-y^2/2)$$

(vi)
$$\Psi(x) = A(8y^3 + 4y^2 - 12y) \exp(-y^2/2)$$

vii)
$$\Psi(x) = A(32y^5 - 160y^3 + 129y)$$

(b) (8 points) What are the energy eigenvalues for this potential? What is the gound state energy?

copyright

(c) (10 points)

In all possible eigengunctions from part (a), choose one to calculate the normalization constant A, and the position expectation $\langle x \rangle$. What is the energy of this eigenfunction? The following integrals may be useful:

 $\int_{0}^{\infty} e^{-t^{2}} t^{2z-1} dt = \frac{\Gamma(z)}{2} \text{ ; and } \Gamma(n) = (n-1)\Gamma(n-1)\text{; and } \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}.$ copyright the the the