University of Kentucky Department of Physics and Astronomy

PHY 520 Introduction to Quantum Mechanics Fall 2003 Test 2

Answer all questions. Write down all work in detail. Time allowed: 50 minutes

Consider a double delta function potential

$$V(x) = -\frac{\hbar^2 \lambda}{2ma} [\delta(x-a) + \delta(x+a)]$$

and E < 0.

Answer all of the following.

(a) (10 points)

Substitute the potential into the Schroedinger equation and simplify it. Also write down the boundary conditions at x = a and x = -a.

(10 points) The solution to the Schroedinger equation has to be either even or odd. Explain why.

(c)

(10 points) Solve the Schroedinger equation up to a normalization and show that

$$\tan ka = \frac{\lambda}{ka} - 1 \qquad \text{for even solution}$$

$$\operatorname{coth} ka = \frac{\lambda}{ka} - 1 \qquad \text{for odd solution}$$

$$\operatorname{where} \kappa = \sqrt{\frac{2m|E|}{\hbar^2}}$$

(d) (10 points)

How many bound states are there for (i) small λ (ii) large λ ?

Hint: You may want to re-write the eigenvalue condition given in part (c) as:

	$\tanh \kappa a = \frac{\lambda}{\kappa a} - 1$	for even solution
	$\tanh \kappa a = \left(\frac{\lambda}{\kappa a} - 1\right)^{-1}$	for odd solution
		XA
		× Y
	X	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	A.	
.1		
X		
or		
Cox		