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University of Kentucky
Department of Physics and Astronomy

PHY 520 Introduction to Quantum Mechanics
Fall 2004
Final Examination
Answer all four questions (total 200 points). Write down all work in detail.
Time allowed: 120 minutes
Merry Christmas and Happy New Year!

1. (50 points)

Consider a particle of mass moving under the influence of a delta function
potential V(x)=-Bo(x) with energy E<O0.

A V(x)

v
>

V(x)=- Bd(x)

(a) (10 points)
Write down the boundary conditions for the eigenfunction at x=0.

Continuity of wave function = y (-¢) =y (¢) (>0

Schroedinger equation :
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(b) (20 points)
Solve for the eigenfunction(s) and the corresponding energy eigenvalue(s).
How many bound states are there?

2m | E |

Since E <0, let x =
hl

The wave function for x < 0isy_ = Ae™
The wave function forx > Oisy_ = Be ™
y(-¢)=y()>A=B
The wave function forx > Qisy, = Ae™ (i.e. the wavefunction is even)

Schroeding er equation :
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To determine A :
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There is always one bound state for single delta function potential.



(©) (20 points)
A wall is now placed at x=d so that the potential is given by

Vix) = o0 x>d
®=1 150 x<d
V=00
V()
—p» X
d
V(x)=15(x)

Solve for the eigenfunction(s) and the corresponding energy eigenvalue(s) for the
bound state(s). (To save time, you do not need to normalize the state function).
Can you reduce your result to that of part (b) by letting d —o0 ?

2m | E |

Since E < 0, let x = 3
h

The wave function for x < 0isy_ = Ae™

The wave function for x > 0isy . =Ce™ + De™ (since now x will not equal to o)

w(d)=0 = Ce™ +De™ =0 = C=-De’™ -—-(D)
v(-e)=y(e)=>A=C+D = A=(1-¢"")D ---(2)
0 x>d
Therefore the wavefunction is y/(x) = < D(-e**“e ™ + &™) 0<x<d
(1-e*")De™ x<0
D is to be determined by normalization condition :
I vydx =1

Schroedinger equation :
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(This page is purposely left blank for extra writing space)
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Asd > w,e™ > 0and xk > nf:—z, which is the same result as part (b).



(50 points)
Consider a particle of mass m in a simple harmonic potential

(a)

(b)

1
V(x)=—kx’
(x) 5 kx

(5 points)
Write down the ground state energy in terms of m and k.

E, :lha), buta):\/g,.’. E, :li’za):li’z\/E
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(5 points)

Which of the following functions is the ground state wave function of

simple harmonic oscillation? Briefly explain (qualitatively) why you
choose your answer.
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In above, & = ne x,and P;" is the Associated Legendre Polynomials.



(©) (10 points)
Calculate <x> and <p> for the ground state, where p is momentum.

vo=(m2) oo

Let & = %x=axwitha=1/%

Odd function
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(d) (15 points)
Calculate <x*> and <p>>. You may find the following integration useful:
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Note that d(xe®™ )=e** —2a’x%e“™
— xe ™ :j e dx-2azj x%e ¥ dx

- - A 1z Jrx
= x2e ¥ dx = e “*dx = =
J; 2_!; 207 a 2a’
'<X2>= a_ZE.\/;z ! =l h ("a: %)
T 200 2a’ 2 mo /]

1

| l//(X) >— (%j 6-52/2
Let & = %X=axwitha=1/%
2 \+
|y (x) >= (a—j e @ X2
i

2

hz;jwa»

<p’ >=<yx)] (

1 1
© 2 \4 2 2 \4
a 2.2 a a 2.2
:J‘[ ] eaX/z"hzaxz'[ J e X 24y
T T
-00
1
2\2 ©
a 242 a 242
=-h2 J’ eax/z [_a2xeax/2bx
a Ox

T

[T

2 0
:h2a2 o I e—a2x2/2 a [ -a’x /ZF
-0

a 2.2 2.2 2.2
2 2 - 2| - 2 2,2 - 2
=h0{ eax/[eax/ —aXCaX/}lX

B
§ ——38

=h’a’ a_ ﬁ e Vidx —a J. “zxzdx}

w» » - o 1/2
> dx { [ e ax] -azyzdy} =[j ¢ rdr [ de}
0 0 0

1/2

=00

o0

2

27zj e
0



2,2

On the other hand, d(xe® ™ )=e“™ —2a°x%e“™
= xe ™" = I e dx - 2a2I x2e X dx
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Substitute these integrations into the last equation :
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(e) (15 points)
Calculate oxo,, to show that Uncertainty Principle is followed. Also show
that <T> = <V>, where T is kinetic energy.
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This satisfies the Uncertainty Principle o, o, > 5
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3. (50 points)

An electron is at rest in an oscillating magnetic field
B=B, cos(wt) k (1A< is the unit vector along the z - axis)
Where By and @ are constants.

(a) (10points)
Construct the Hamiltonian matrix for this system.

_ 1 0
H=-fi-B=3-B=5,B,=- 2B, cos(wt)(o J

(b) (20 points)

The electron starts out (at t=0) in the spin-up state wotj res[ect tp the x-
axis (that is: %(0) = x.*). Determine x(t) at any subsequent time from the
time dependent Schroedinger equation.

We will work with S — representation in solving this problem.

Since the electron starts out at spin up state with respect to the x - axis, we need to find out the

. A : no. .
eigenstate of S_ correspond to an eigenvalue of 5 (i.e."spinu up") first :

(0 1)\ u fifu v=u
-~ =+—| |=
211 O)\v 2\v u=v
1
If we choose u =1, then v =1, i.e. the eigenvector is (J Normalizing this vector, we obtain the

. . 1 (1
normalized eigenvector as —| |.

2

1 (1 . .
L0 =W =— (J (in S, — representation)

V2

To determine y(0), we have to solve the time dependent Schroedinger equation :

in jt 20 =F 4 =in 2 (a(t)j - g, cos(a)t)((l) 0 J{a(t)j

at\lb) 2 — 1) b(t)
o (a0)_i a(t)
o [b(t)J =5 B COS(M)(- b(t)J

sin( wt)
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But we know that a0 _ 7(0) =y = 1 h. a(0)= 1 b(0) = L
b(0) o2l V27 NGR
a(t) 1 eﬁﬂg osin(e) 1 By sin(an 1~ By sin(ot)
Sy = =— ; or—e?® S 4—e 2 \’
Z( ) (b(t)} \/5 efﬁyBo sin(at) ,\/E \/5

(©) (15 points)
Find the probability of getting +7/2, if you measure Sy.

We have alredy determined in part (b) that the eigenvector for S corresponds to an

eigenvalue of g is:

1 (1
e (in S, —representation)
o2 (1] Z

.. Probability of getting g if youmeasureS, is:
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(d) (5 points)
What is the minimum field (By) required to force a complete flip in S?

(x)

® and y. Fora complete

From part (c) above, we can see the system is oscillating between y

flipin S, the above probability should be able to reach 0 at a certain time. This requires




4. (50 points)
In doing this problem, you may find the following Clebsch-Gordon coefficient
table for adding |j;,m;> and [j=1/2,m,> into |j, mp>:

1
m,,m, mlamz__g
j+m+ 7 j-—m+7<
j:j1+lamJ:m1+m2 I .m : I .m :
2 2y, +1 23, +1
J=h —5,m; =m, +m, -7 : — :
2 2y, +1 2y, +1

The state function of an electron in a hydrogen atom is described as

2 3
\P:\/;‘//sm +\/;‘//511

and it is known that the electron is in a spin up state (i.e. m=1/2).

(a) (10 points)
What are the possible values of total angular momentum quantum number
j and its z-component m;?

It is known that j;=1and j,=1/2, hence j =1 -1/2=1/2 or j=1+1/2=3/2 (i.e.
two possible values for j)

In general, if j=1/2, mj=-1/2 or +1/2. 1fj=3/2. , m=-3/2 or -1/2, 1/2, 3/2.
Hence there are 4 possible values of my (-3/2 or -1/2, 1/2, 3/2). However,
it is necessary to satisfy my = m; + my. mjy for ys;o can only be
0+1/2=+1/2, and m; for ys;; can only be 1+1/2=3/2. There are only two
possible values of mjy for the present problem.+1/2 and +3/2.

In other words, we can expressed W in the following three total angular
momentum states:

j=1/2, m=+1/2> (note that |j=1/2, m;=+3/2> is not possible)

j=3/2, m=+1/2> and

j=3/2, m=+3/2>

(b) (10 points)
Make use of the above given Clebsch-Gordon coefficients, construct two
tables for the cases (i) m;=0, my=1/2, and (ii) m;=1, my=1/2.



(1) For the case m;=0, m,=1/2:

m, =0,m, :% m, =0,m, :—l

1 1

m, =— m, =——

(m, =-) (my =-2)
.3 2 2
_]ZE,mJ:m1+m2 E 5
jzl’mJ:ml+m2 oy !
2 3 3

m =lm,=— m,=lm, =-—
3 1
(mJZE) (mJ:E)
.3 1
JZE,mJ:m1+m2 1 3
j=l,mJ=ml+m2 0 2
2 3

Note that we have “overdone” the calculation. The last column in above tables

correspond to the case my= -1/2, which is not necessary for this problem (since
the electron is in the spin up state).

(c) (10 points)

Make use of your results in part (b), write ¥ in terms of the total angular
momentum eigenvectors |j, my>.



Using the table for m;=0

) 2.
S Wsi0 = §|_]=5,mJ=

Using the table for m;=1:

1
1’1’11=]‘,1’1’12=—E
1
m, =—
2 ( J 2)

3 1
J:E,m1=ml+m2 1 E
J:l5mJ:ml+m2 0 %

2 3
V/511:U=%,mJ=%>

2 3
\P:\/;lﬂslo—i_ g'/’sn
2 2 1
B g[ E'J:%’mJ:%>_ §|J=%,m12%>]+ ~lj=3,m; =35>
4 2 3
- E‘Jz%’ y=7>- El.]:%’mjzl>+ Zlj=2,m,=3>



(d) (10 points)
If the total angular momentum is measured, what are the probabilities of
obtaining (i) j=1/2 and (i1) j=3/2?
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(e) (10 points)
If the z-component of the total angular momentum is measured, what are
the probabilities of obtaining (i) my=-3/2, (ii) my=-1/2, (iii) m=1/2, and
my=3/2?
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