Find the normalized eigenspinors for S_y .

Solution:

 $In S_z$ – representation :

$$S_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

The normalized eigenvectors of S_z is the same as that of matrix $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$. So we just need to work on the matrix without worrying the constant \hbar .

Let λ be the eigenvalues.

$$\det \begin{pmatrix} -\lambda & -i \\ i & -\lambda \end{pmatrix} = 0$$
$$\Rightarrow (\lambda^2 - 1) = 0$$

$$\Rightarrow \lambda = \pm 1$$

Let the eigenvectors be $\begin{pmatrix} u \\ v \end{pmatrix}$

Case1: $\lambda = +1$

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} \Rightarrow \begin{cases} -iv = u \\ iu = v \end{cases}$$
 choose $u = 1$, then $v = i$

The eigenvector of this case is $\binom{1}{i}$. It has a magnitude of $\sqrt{|1|^2 + |i|^2} = \sqrt{2}$. Normalizing it, the

eigenvector becomes $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}$

Case1: $\lambda = -1$

$$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = -\begin{pmatrix} u \\ v \end{pmatrix} \Rightarrow \begin{cases} -iv = -u \\ iu = -v \end{cases} \text{ choose } u = 1, \text{ then } v = -i$$

The eigenvector of this case is $\begin{pmatrix} 1 \\ -i \end{pmatrix}$. It has a magnitude of $\sqrt{|1|^2 + |-i|^2} = \sqrt{2}$. Normalizing it, the

eigenvector becomes $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Hence, the two eigenvectors of S_y in S_z – representation are $\frac{1}{\sqrt{2}} \binom{1}{i}$ and $\frac{1}{\sqrt{2}} \binom{1}{-i}$.