April 1, 2008

Consider the Hermitian operator H that has the property $H^4=1$

What are the eigenvalues of the operator H? What are the eigenvalues of H if it is not restricted to being Hermitian?

Solution:

Let $H \mid \psi \rangle = E \mid \psi \rangle$ where E is the eigenvalue.

Since H is Hermitian, E has to be real. ∴ The eigenvalues of Hermitian H are 1 and -1.

If H is not restricted to Hermitian, H has four eigenvalues, 1, -1, i, -i.