PHY 232 Summer 2016 Class Work Class 35. Work on Last Class - RL Circuit

PART A.

Switch is closed at t=0.

(a) What is the value of the following quantities at t=0 (in terms of V, R, and L):

(b) What is the value of the following quantities at $t=\infty$ (in terms of V, R, and L):

I = V/R $V_L = 0$ $V_R = V$

(c) Write down the following quantities as a function of time (in terms of V, R, L, and t):

$$I(t) = \frac{V}{R} (1 - e^{-\frac{R}{L}t})$$

$$V_L(t) = Ve^{-\frac{R}{L}t}$$

$$V_{R}(t) = V(1 - e^{-\frac{R}{L}t})$$

$$\begin{aligned} & P_{R}(t) = \frac{V^{2}}{R}(1-e^{-\frac{R}{L}t})^{2} & \qquad & (P_{R} = \text{Power dissipated in R}) \\ & U_{L}(t) = \frac{LV^{2}}{2R^{2}}(1-e^{-\frac{R}{L}t})^{2} & \qquad & (U_{L} = \text{Energy stored in R}) \end{aligned}$$

$$U_L(t) = \frac{LV^2}{2R^2} (1 - e^{-\frac{R}{L}t})^2$$
 (U_L = Energy stored in R)

PART B.

If current through the resistor is I_0 at t=0.

(a) What is the value of the following quantities at t=0 (in terms of V, R, L and I_0):

$$I = I_0 \text{ (Given)} \quad V_L = I_0 R \quad V_R = I_0 R$$

(b) What is the value of the following quantities at $t=\infty$ (in terms of V, R, L and I_0):

$$I = 0 V_L = 0 V_R = 0$$

(c) Write down the following quantities as a function of time (in terms of V, R, L, I₀ and t):

$$I_{0}e^{-\frac{R}{L}t}$$

$$V_{L}(t) = I_{0}Re^{-\frac{R}{L}t}$$

$$V_{R}(t) = I_{0}Re^{-\frac{R}{L}t}$$

$$P_R(t) = I_0^2 Re^{-\frac{2R}{L}t}$$
 (P_R = Power dissipated in R)

$$U_{L}(t) = \frac{1}{2}LI_{0}^{2}e^{-\frac{2R}{L}t}$$
 (U_L = Energy stored in R)