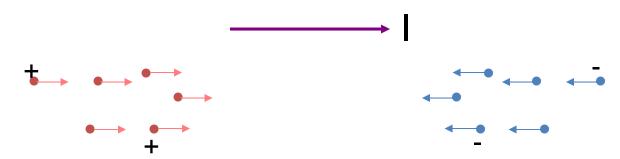

Class 17: Current and Resistance

Current

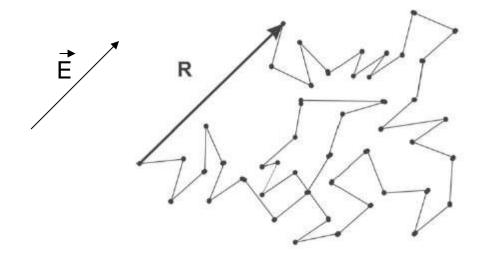


The direction of the current is the direction in which positive charges flow when free to do so. If dQ is the amount of charge passes through A in a short time interval dt, current is defined as:

$$I = \frac{dQ}{dt}$$

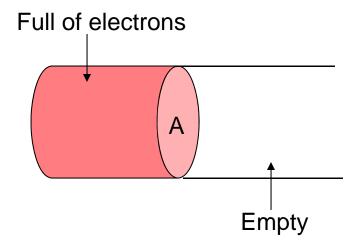
Units of current:

Ampere (A)
$$\equiv$$
 C/s

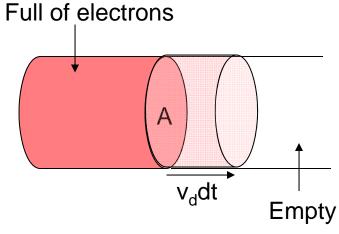


Electrically these two cases produce the same current, but they can be distinguished with a magnetic field.

Drifting velocity v_d


At any instant, electrons contributing to the current is moving very fast at about 10⁶ m/s.

They also make collision with atoms and impurities very often, about 10¹⁴ times per second.

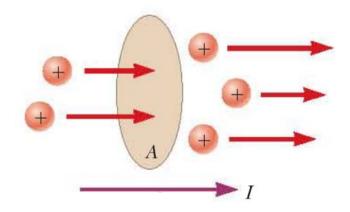


As a result, electrons drift very slowly along the electric field direction with a drifting velocity $v_d \sim 10^{-4}$ m/s.

Microscopic Model of Current

How many electron will pass the area A in a short time interval dt?

If n is the number of electrons per unit volume.


Number of electrons pass through area A = $n \times volume = n(v_d dt)A$

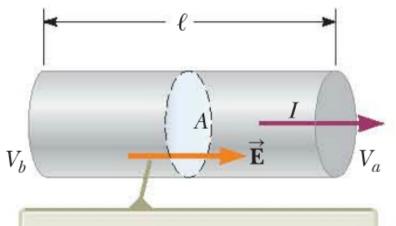
If the charge of electron is e.

Charge pass through area A is $dQ=ne(v_ddt)A$

$$\therefore I = \frac{dQ}{dt} \implies I = nev_d A$$

Current Density and Ohm's Law (physics version)

Current density


$$J = \frac{I}{A}$$

Ohm's Law:

$$\vec{J} = \frac{1}{\rho} \vec{E}$$

- 1. ρ is called resistivity. Do not confuse this with the volumetric charge density.
- 2. ρ is a property of materials.

Ohm's Law (electronics version)

A potential difference $\Delta V = V_b - V_a$ maintained across the conductor sets up an electric field $\vec{\mathbf{E}}$, and this field produces a current I that is proportional to the potential difference.

 $J \rightarrow I$ and $E \rightarrow V$ Ohm's Law:

$$J = \frac{1}{\rho} E \implies \frac{I}{A} = \frac{1}{\rho} \cdot \frac{\Delta V}{\ell}$$
$$\Rightarrow \Delta V = \left(\frac{\rho \ell}{A}\right) I$$
$$\Rightarrow \Delta V = I R$$

where

$$R = \frac{\rho \, \ell}{A}$$

- 1. R is called the resistance.
- 2. Units of resistance R is Ohm (Ω). $\Omega \equiv V/A$
- 3. Units of resistivity ρ is Ω m.

Power

Power dissipated in resistance R:

$$P = I\Delta V = I^2 R = \frac{\Delta V^2}{R}$$

Units of power: Watt (W) ≡ J/s