Class 28 Biot – Savart Law and Ampere's Law

The way we define to torque on a Rectangular Loop here does not follow

convention, but nothing

Top view

$$\vec{\tau}_2 = \vec{\tau}_4 = IBb \cdot \frac{a}{2} \cos \theta \otimes$$

$$\vec{\tau} = IBa \cdot b \cos \theta \otimes = IBA\cos \theta \otimes = I\vec{A} \times \vec{B}$$

Correction

Class 25 Written notes pg.2

Correction Magnetic torque on a Rectangular Loop

Class 25 slide 4

Top view

Biot-Savart Law

The direction of the field is out of the page at *P*.

The direction of the field is into the page at P'.

Magnetic field at point P due to the infinitesimal element ds:

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2} \quad \text{or} \quad \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \vec{r}}{r^3}$$

Magnetic field due to the whole wire:

$$\vec{B} = \int_{\text{wire}} \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2}$$

 μ_0 is a constant called permeability of free space:

$$\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$$

In the calculation of magnetic field, Biot-Savart Law play the same role as the Coulomb's Law in electric field.

Magnetic Field at the Center of a Circular Current Loop

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2}$$
$$= \frac{\mu_0 I}{4\pi} \frac{ds}{R^2} \bullet$$

$$ds = Rd\theta$$

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{Rd\theta}{R^2} \bullet$$
$$= \frac{\mu_0 I}{4\pi R} d\theta \bullet$$

$$\vec{B} = \int_{0}^{2\pi} \frac{\mu_{0} \mathbf{I}}{4\pi \mathbf{R}} d\theta \bullet = \bullet \frac{\mu_{0} \mathbf{I}}{4\pi \mathbf{R}} \int_{0}^{2\pi} d\theta = \frac{\mu_{0} \mathbf{I}}{4\pi \mathbf{R}} [\theta]_{0}^{2\pi} \bullet$$
$$= \frac{\mu_{0} \mathbf{I}}{4\pi \mathbf{R}} \cdot 2\pi \bullet$$

$$\therefore \vec{B} = \frac{\mu_0 I}{2R} \bullet$$

Ampere's Law

Path Integral of Magnetic Field

Do you remember:

$$\oint \vec{E} \cdot d\vec{s} = ? \quad \text{(for stationary case)}$$

Gauss's Law (Maxwell's first equation)

For any closed surface,

From Class 5

$$\varepsilon_0 \Phi_E = q_{in}$$
 or $\varepsilon_0 \oiint \vec{E} \cdot d\vec{A} = q_{in}$

Two types of problems that involve Gauss's Law:

- 1. Give you left hand side (i.e. flux through a given surface), calculate the right hand side (i.e. charge enclosed by that surface).
- 2. Give you right hand side (i.e. a charge distribution), calculate the left hand side (i.e. flux and the electric field).

Ampere's Law (Maxwell's third equation - partial)

For any closed loop,

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mu_0 \mathbf{I}_{in}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$$

Two types of problems that involve Ampere's Law:

- 1. Give you left hand side (i.e. line integral of a given loop), calculate the right hand side (i.e. current enclosed by that loop).
- 2. Give you right hand side (i.e. current), calculate the left hand side (i.e. the line integral and the magnetic field).

Calculating Magnetic Field Using Ampere's Law

1. By symmetry argument, construct a loop so that the path integral $\oint \vec{B} \cdot d\vec{s}$ can be easily calculated. In most cases when Ampere's Law is applicable,

$$\oint \vec{B} \cdot d\vec{s} = BL$$

where L is the length of the loop.

2. You can then apply Ampere's Law and solve for B:

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{in} \implies BL = \mu_0 I_{in} \implies B = \frac{\mu_0 I_{in}}{L}$$

3. Two common cases when Ampere's Law can be used to calculate magnetic field: infinite long wire and infinite long solenoid / toroid.

Magnetic field due to a long wire

Want to calculate the magnetic field B at point P.

By symmetry argument, B is in the plane of the paper (infinite long wire), has the same magnitude for all points on the dotted circular loop (azimuthal symmetry), and tangent to the circular loop (so $\cos \theta = 1$).

$$\therefore \oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{s}} = \mathbf{B} \cdot 2\pi \mathbf{r}$$

Ampere's Law:
$$\oint \vec{B} \cdot d\vec{s} = \mu_0 I \Rightarrow B \cdot 2\pi r = \mu_0 I$$

$$\mu_0 I$$

$$\Rightarrow B = \frac{\mu_0 I}{2\pi r}$$

Magnetic Force Between Two Parallel Long Wires

Magnetic field at point P due to I₁:

$$B = \frac{\mu_0 I_1}{2\pi r}$$

If another current I₂ parallel to I₁ is passing through point P, it will experience a force because of the field there.

Magnetic Force Between Two Parallel Long Wires

Magnetic field at point P due to I₁:

$$B = \frac{\mu_0 I_1}{2\pi r}$$

If another current I₂ parallel to I₁ is passing through point P, it will experience a force because of the field there.

$$\vec{F}_{B} = I_{2}\vec{L} \times \vec{B} \implies F_{B} = I_{2}BL \sin 90^{\circ} = I_{2}BL$$

$$\Rightarrow F_{B} = I_{2}L \cdot \frac{\mu_{0}I_{1}}{2\pi r}$$

$$\Rightarrow \frac{F_{B}}{L} = \frac{\mu_{0}I_{1}I_{2}}{2\pi r}$$

Force is attractive if the two currents are in the same direction, repulsive if the two currents are in opposite direction.