Class 38: Electromagnetic radiation



Applying Maxwell’s Third Equation to
Plane Electromagnetic Waves
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Figure 34.6 Atan instant when
a plane wave moving in the posi-
tive x direction passes through a
rectangular path of width dxlying
in the xy plane, the electric field 1n
the y direction varies from ]Z( ) to
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Applying Maxwell’s Fourth Equation to
Plane Electromagnetic Waves
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plane wave passes through a rect- OE

angular path of width dxlying in = ool —- dx

the xz plane, the magnetic field in ot

the zdirection varies from l_?:(,:-.J (0 oB oE
TR0 T SoMo o

ﬁ(x + dx). X ot



Classical wave equation
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Electric and magnetic fields in wave motion
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Electromagnetic plane waves
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Sinusoidal solution :
E=E, ., cos(kx-wot)
B=B,_ cos(kx-wt)

ACTIVE FIGURE 34.8 inhere- k=27 and w2t
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A sinusoidal electromagnetic wave
moves in the positive x direction

with a speed c. w=ck, E —cB and E=cB
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Unit area

Intensity

In 1 second

Intensity | is defined as:
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Poynting vector
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FigL{I'E 34.10 The Poynting vec-
tor 8 for a plane electromagnetic
wave is along the direction of wave
propagation.

At any point, knowing Eanda we can define
Poynting vector S as:
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Poynting vector gives the energy passes
through a unit surface area
perpendicular to the direction of wave
propagation. S'is along the direction of
wave propagation and has unit W/m?2.

For plane wave:
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Momentum

Unit area

If all these photons are absorbed by the
In 1 second surface:
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But this is on unit area
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Unit area If all these photons are reflected by the
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Radiation Pressure
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Electromagnetic spectrum

Henetrates Earn’s
Atmosphers? N N
Radiation Type Haclm Microwave Infrarecl Visible  Ultraviolet  X-ray Gamma ray

Wavelength (m) 107 107 0.5x107* 10 107 1071

Il %+~

Buildings Humans Buterflies Needlz Point 2rotozoans Molecules  Atcms  Atomic huclei

10* 10* -t 1045 10t 10+ 10F°

Approximaze Scale
of Wavelength

lemperature of
ohjects atwhich
this radiation is the ||
mostintense %
wavelength emitted

1K 100 < 10.000 K 10.000.000 K
-272°C -173°C 0727 °C ~10.000.000 *C



