PHY 232 Summer 2016 Class Work Class 30. Ampere's Law

Consider three infinite long wires parallel to each other:

(a) What is the magnetic force per unit length acting on l_1 due to l_2 ? Please use \hat{i} , \hat{j} , \hat{k} notation.

(b) What is the magnetic force per unit length acting on I_1 due to I_3 ? Please use $\hat{i}, \hat{j}, \hat{k}$ notation. $|\hat{F}_{31}| = 4.8 \times 10^{-5} \, \text{N} \qquad \qquad F_{x} = 4.8 \times 10^{-5} \, \text{Cos} \, 0 = 4.8 \times 10^{-5} \, \text{N} \, 0 = 4.8 \times 10^{-5} \,$

(c) What is the total magnetic force per unit length acting on I_1 ? Please use $\hat{i}, \hat{j}, \hat{k}$ notation.

(d) What is the magnitude of the total magnetic force per unit length acting on 11? What is its direction (with respect to the +x axis)?

Maxwell's

1st
$$Sq$$
.

Gauss's Law $S_0 \oint \vec{E} \cdot d\vec{A} = Q_{in}$

2nd Sq .

4th Eq. ??

Faraday's Law.

VXB=MoJ

Incomplete.