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• A good physicist
– wide knowledge, deep intuition, full of innovative ideas, up-to-

date in theory and experiment 
• Visionary

– For example: implementation of the overlap operator (reached a 
record 180 MeV pion mass on a 3.2 fm lattice, exposed ghosts in 
the chiral regime) 

• Quality over quantity
– “A study of pentaquarks on the lattice with overlap fermions”, Kentucky group, 

PRD70 (2004).
• no evidence of bound state, consistent with KN scattering states
• volume dependence of the spectral weight (1/V).   G(t) = w exp(-m t)
• described as the “most credible lattice calculation” at the plenary of Lattice05.

Symposium  in honor of 
Keh-Fei Liu on the occasion 
of his 60th Birthday
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Background Field Calculations in 
Lattice QCD
Frank Lee, GWU

polarQCD Collaboration
http://eagle.phys.gwu.edu/~fxlee/polarQCD.html

• Physics motivation
• Background field method
• Some results

– magnetic moments
– magnetic polarizability
– electric polarizability

• Outlook x

z

http://eagle.phys.gwu.edu/~fxlee/polarQCD.html
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A journey deep into the heart of the atom
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2

But, it is a long, hard struggle 
from quarks and gluons to …
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The Particle Zoo (excitation spectrum of QCD)
Mesons (quarkMesons (quark--antiquarkantiquark))Baryons (3 quarks)Baryons (3 quarks)

qmDqFFL qQCD )(Tr 2
1 ++= µ

µµν
µν γ
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2006 Nobel 
Prize in Physics

• Study of the very small is closely related 
to the study of the very big.
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Quantum Chromodynamics (QCD)
--- the fundamental theory of the strong interaction

(in terms of quarks and gluons)

[ ]∫ ++= qmDqFFxdS qQCD )(Tr 2
14

µ
µµν

µν γAction of QCD:

All physics is computed from path integrals
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which can be evaluated on a space-time lattice.
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Path Integral Method 
(Richard Feynmann)

• Applicable to any problem that can be cast into the form 
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with an action, for example:

• Successfully used in
– statistical physics
– quantum chemistry
– condensed matter physics
– biological physics  
– quantum field theories (QED,QCD, …)
– and more

x2

x1

t1 t2

All possible paths
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BackgroundBackground--Field Field 
CalculationsCalculations

New Topic
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Polarizabilities
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Interaction energy of a hadron in the presence of 
external electromagnetic fields:

µ, α, β: 

static bulk 
response

others :

spatial and time 
resolution

Probe of internal 
structure of the 
system in 
increasingly finer 
detail.
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Compton Scattering
Low-energy expansion of real Compton scattering 
amplitude on the nucleon

polarizabilities: α, β, γ1 , γ2 , γ3 , γ4 
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Experimental Information on Polarizabilities

• Proton electric polarizability (αp) is around 
12 in units of 10-4 fm3.

• Proton magnetic polarizability (βp) is around 
2 in units of 10-4 fm3.

• αn is about the same as αp

• βn is about the same as βp
• Experiments are under way or planned for other 

polarizabilities at electron accelerators around the 
world
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Polarizabilities from ChPT

Babusci et al, PRC58, 1013 (1998) 
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Polarizabilities on the Lattice
Measure mass shifts in progressively-small external electric 
and magnetic fields, specially designed to isolate them:
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Introduction of an external 
electromagnetic field on the lattice

• Minimal coupling in the QCD covariant derivative in 
Euclidean space

µµµµ qAgGD ++∂→

• It suggests multiplying a U(1) phase factor to the links

)exp()( µµ iagGxU =
• Recall that SU(3) gauge field is introduced by the link 

variables

µµµ )U(iaqAxU exp)(' =

• This should be done in two places where the Dirac operator 
appears: both in the dynamical gauge generation and quark 
propagator generation
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For Example
• To apply magnetic field B in the z-direction, 

one can choose the 4-vector potential              

then the y-link is multiplied by a x-dependent 
phase factor

)0,,0,0(),( BxAA =≡ φµ

yy UiqaBxU )exp(→
x

z

t
AE

AB

∂
∂

−−∇=
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φ

• To apply electric field E in the x-direction, one can choose 
the 4-vector potential              

then the x-link is multiplied by a t-dependent phase factor

)0,0,,0( EtA =µ

xx UiqaEtU )exp(→
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Background Field Method

• “Lattice quantum-chromodynamics calculation of some baryon magnetic moments”, 
Bernard, Draper, Olynyk, PRL49 (1982) 1076; NPB220 (1983) 508

• “Dependence of lattice hadron masses on external magnetic fields”, Rubinstein, 
Solomon and Wittlich, NPB457 (1995) 577

• “A study of hadron electric polarizability in quenched lattice QCD”, Fiebig, Wilcox, 
Woloshyn, NPB324, 47 (1989)

• “Electric Polarizability of Neutral Hadrons from Lattice QCD”, Christensen, 
Wilcox, Lee, Zhou, PRD72, 034503 (2005)

• “Baryon magnetic moments in the background field method”, Lee, Kelly, Zhou, 
Wilcox, PLB627, 71 (2005)

• “Magnetic polarizability of hadrons from lattice QCD in the background field 
method”, Lee, Zhou, Wilcox, Christensen, PRD73, 034503 (2006)

• “Electricmagnetic and spin polarizabilitites in lattice QCD”, Detmold, Tiburzi, 
Walker-Loud, PRD73 (2006) 114505 

• “Neutron electric dipole moment with external electric field method in lattice QCD”,
Shintani et al, CP-PACS collaboration, PRD75, 034507 (2007)

Wilson action, 63x10 lattice L=1 fm,
pion mass about 1400 and 900 MeV,
9 configurations. done on a VAX
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yy UiqaBxU )exp(→Computational Demands
• Consider quark propagator generation
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• For each value of external field, a new dynamical 
ensemble is needed that couple to u-quark (q=1/3) 
and d- and s-quark (q=-2/3).
– quark propagator is then computed on the ensembles with 

matching values
• Cost is much reduced if no field is applied in the 

vacuum: any gauge ensemble can be used to 
compute valence quark propagators.
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B yy UiqaBxU )exp(→Lattice details
• Standard Wilson gauge action

– 244 lattice, β=6.0  (or a ≈ 0.1 fm)
– 150 configurations

• Standard Wilson fermion action
– κ=0.1515, 0.1525, 0.1535, 0.1540, 0.1545, 0.1555
– Pion mass about 1015, 908, 794, 732,  667,  522 MeV
– Strange quark mass corresponds to κ=0.1535 (or mπ~794 MeV)
– Fermion boundary conditions: periodic in y and z, fixed in x and t
– Source location (t,x,y,z)=(2,12,1,1)

• The following 5 dimensionless numbers η≡qBa2 =+0.00036, -0.00072, 
+0.00144, -0.00288, +0.00576 correspond to 4 small B fields
eBa2 = -0.00108, 0.00216, -0.00432, 0.00864 for both u and d (or s) quarks.
– Small in the sense that the mass shift is only a fraction of the proton mass: 

µB/m ~ 1 to 5% at the smallest pion mass. In physical units, B ~ 1013 Tesla.

x

z
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What about boundary conditions?
• On a finite lattice with periodic boundary conditions, to get a constant 

magnetic field, B has to be quantized by 

to ensure that the magnetic flux through 
plaquettes in the x-y plane is constant.

,3,2,1   ,22 == n
N

nqBa
x

π

)exp( 2BxiqaU B
y =

x

z

• To minimize the boundary effects, we work with fixed b.c. in x-
direction, so that quarks originating in the middle of the lattice has 
little chance of propagating to the edge.

• But, for Nx=24 and 1/a=2 GeV,  the lowest allowed field would give 
the proton a mass shift of about 500 MeV, which is unacceptably 
large (proton is severely distorted). So we have to abandon the 
quantization condition, and work with much smaller fields.

B
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A computational trick
• We generate two sets of quark propagators, one with the 

original set of fields, the other with the fields reversed.
• The mass shift in the presence of small fields is

• At the cost of a factor of two, 
– by taking the average, [δm(B) + δm(-B)]/2 , we get the leading 

quadratic response with the odd-powered terms eliminated.  
(magnetic polarizability)

– by taking the difference, [δm(B) - δ m(-B)]/2, we get the leading 
linear response with the even-powered terms eliminated. 
(magnetic moment)

• Our calculation is equivalent to 11 mass spectrum 
calculations.
– 5 original fields, 5 reversed, plus the zero-field to set the baseline
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Magnetic MomentsMagnetic Moments

New Topic
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Magnetic moment
• For a Dirac particle of spin s in small fields, 

where upper sign  means spin-up and lower sign spin-
down, and 

BmE µ±=±

s
m
eg

2
=µ

• g factor is extracted from

     )()(
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• Look for the slope (g-factor) on the straight line 
of the form )(eBgm =δ
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Proton mass shifts (eBgm =δ

• We use the 2 smallest fields to fit the line.
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)(eBgm =δ
Neutron mass shifts
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Proton and neutron magnetic moments
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Chiral Extrapolation
• To one meson loop, χPT predicts

but only applicable in small mass region.
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• Encapsulating form (Leinweber, Lu and Thomas, 
PRD60 (1999) 034014)

• For small mass,
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• For large mass,
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Octet Sigma magnetic moments
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Delta magnetic moments
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Proton and ∆+ magnetic moments

Curvatures expected from  ChPT.
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Magnetic moments

F.X. Lee, R. Kelly, L. Zhou, W. Wilcox, Phys. Lett. B 627, 71 (2005) 
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Our new results on vector meson g factors
(preliminary)

)}(),(),({~|| 222 qGqGqGJ QMC>< ρρ µ

hep-lat/0703014, Adelaide group
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PolarizabilitiesPolarizabilities

New Topic
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2

2
1 Em α−=∆Neutron Mass Shift in Electric FieldNeutron Mass Shift in Electric Field
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Electric Polarizability of neutronElectric Polarizability of neutron
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Electric Electric PolarizabilitiesPolarizabilities of Neutral Particlesof Neutral Particles

Christensen, Wilcox, Lee, Zhou, 
Phys.Rev. D72 (2005) 034503
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2

2
1 Bm β−=∆Neutron Mass Shifts in Magnetic FieldNeutron Mass Shifts in Magnetic Field
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Magnetic Polarizability of the NucleonMagnetic Polarizability of the Nucleon
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Magnetic Magnetic PolarizabilitiesPolarizabilities: baryon octet: baryon octet

F.X. Lee, L. Zhou, W. Wilcox, J. Christensen, Phys. Rev. D73 (2006) 034503
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Magnetic Magnetic PolarizabilitiesPolarizabilities: baryon : baryon decupletdecuplet

PRD73 (2006) 034503
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Magnetic Magnetic PolarizabilitiesPolarizabilities: mesons: mesons

PRD73 (2006) 034503
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WhatWhat’’s Next ?s Next ?
Compute higher-order polarizabilities

Need non-uniform, sourceless fields
For example, to extract αE2 and γE2, choose

For example, to extract βM2 and γM2, choose

α and β must be re-measured and subtracted

The path to unquenched calculations
Use CP-PACS 2+1 flavor dynamical gauge ensembles (Iwasaki glue + 
clover). But still U(1) quenched
Introduce U(1) fields in the dynamical gauge generation 
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ConclusionConclusion
The background field method in lattice QCD is a 
viable way of probing hadron internal structure 

Magnetic moments
Electric and magnetic polarizabilities
Neutron electric dipole moment
Proton beta-decay
and more

A nice complement to experiments
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Beta-decay of proton in magnetic field

BmE ppp
++ += µ

BmE nnn
−− += µ

Energy
• At sufficiently large B 

fields (1016 Tesla), proton 
can become heavier than 
neutron, allowing the ‘β-
decay’ of the proton:

evenp ++→ +

B0 B

evepn ++→ −

• As compared to the natural neutron 
β-decay:

Such process can take place in stars where extremely strong magnetic 
field exists.
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