
What does **EBAC** at JLab hope to get from **LQCD**?

T.-S. H. Lee

Argonne National Laboratory

and

Excited Baryon Analysis Center (EBAC) at JLab

A long-standing problem :

What are the spectrum and structure of excited baryon states ?

• Recent development :

Extensive and high precision data of photo- and electro-production of $\pi, \eta, K, \rho, \omega, \phi$ mesons have been obtained at JLab, Mainz, Bonn, GRAAL, and Spring-8.

 \rightarrow

• Challenges:

Extract and interpret the information on the excited nucleon states which couple with meson-baryon continuum to form resonances (N^*) in meson production reactions.

This talk :

Recent theoretical analyses of meson production data

 \rightarrow

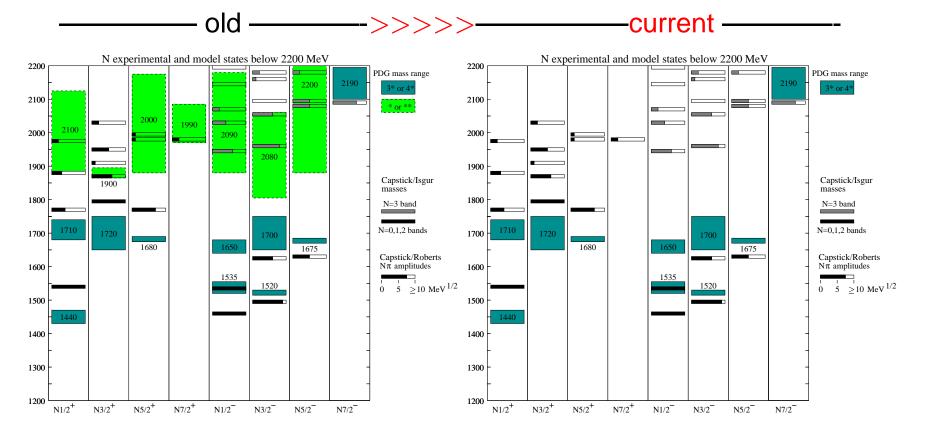
• Extract N^* parameters :

Masses, Widths, Form factors

- Interpret N^* parameters :
 - Hadron models with effective degrees of freedom
 - Lattice QCD

\rightarrow

Understand non-perturbative QCD :


- Confinement mechanism
- Chiral dynamics of meson cloud of baryons

• • • • • •

Current focus:

- Identify baryon excited states at W > 1.7 GeV
 - \rightarrow

Establish symmetry property ($SU(6) \oplus O(3)$ or ????)

Recent PDG assessment : 1- and 2-star states are doubtful

• Extract and interpret N- N^* form factors

 \rightarrow

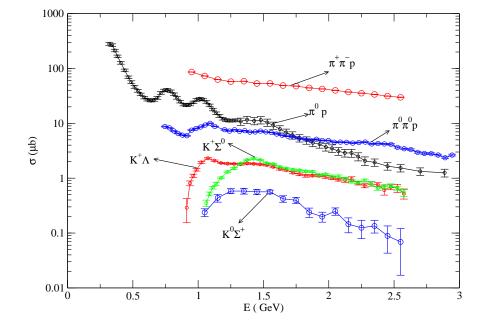
Reveal

- The quark sub-structure of baryon excited states

- The meson cloud effects

- Baryon excited states are coupled to meson-baryon reaction channels to form resonances (N*)
 - \rightarrow

Reaction amplitude : $T = t^R + t^{nr}$


- t^R : changes of internal structure ($N \rightarrow \Delta, N(1440), \cdots$)
- t^{nr} : non-resonant interactions between reaction channels (Meson exchanges · · · ·)
- Many reaction channels

 $\gamma N, \pi N, \eta N, \omega N, K\Lambda, K\Sigma, \pi \pi N(\pi \Delta, \rho N, \sigma N)$

\rightarrow

A multi-channel and multi-resonance reaction problem

Example: $\gamma N \rightarrow KY$

γp Reaction Cross Sections

Must include:

- coupled-channel effects :
 - $-\gamma p \rightarrow \pi N \rightarrow KY$
 - $-\gamma p \rightarrow \pi \pi N \rightarrow KY$
- at least about 10 known N^* resonances

Theoretical Development

Very far from predicting meson-baryon reactions from QCD

 \rightarrow

Current effort:

- Develop reaction models to extract N^* parameters
- Interpret N^* parameters using available hadron structure calculations

Note :

 \rightarrow

Analysis based on dispersion relations is difficult :

- can not handle multi-particle channels ($\pi\pi N$)
- not applicable at high Q^2 region

Develop alternative reaction models

• K-matrix models (On-shell approximation, PWA)

$$S = \frac{1 + iK}{1 - iK}$$

$$K \sim V(tree - diagram)$$

GWU-VPI (SAID), Mainz (MAID), JLab-Yerevan, CMU (PWA)
 Giessen, GWU, KVI, Bonn-Gatchina, JLab-MSU (JM06),
 Valencia, Hiroshima-Onomichi, · · ·

• Dynamical Models

$$S = 1 + 2iT$$
$$T = V + \int VGT$$

 \rightarrow

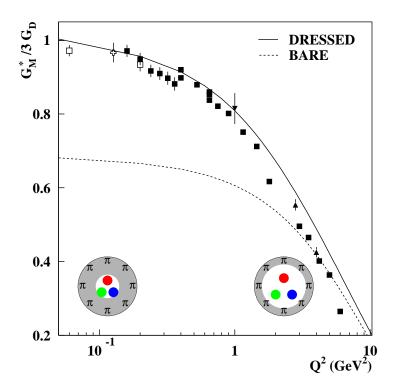
Account for reaction mechanisms in the short-range (off-shell) region where we want to map out N^* structure

Sato-Lee, Gross-Surya, Dubna-Mainz-Taipei, Fuda-Alharbi,
 Ohio-Utrecht, Saclay-Pitt-ANL, Pascalutsa-Vanderhaeghen, Julich, ··

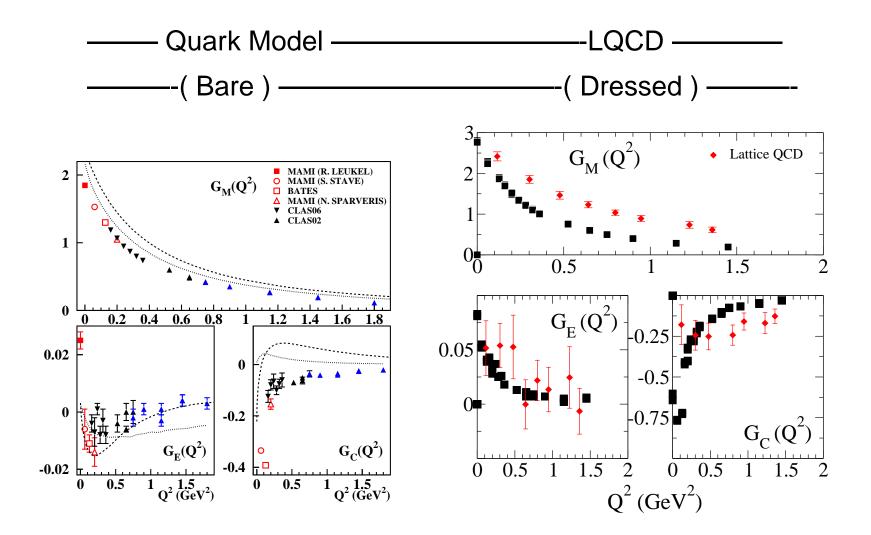
Two approaches are complementary :

 \rightarrow

• K-matrix models solve algebraic equations


very efficient in processing multi-channel data to get first-run results of N^* parameters

• Dynamical models account for short-range (off-shell) mechanisms \rightarrow

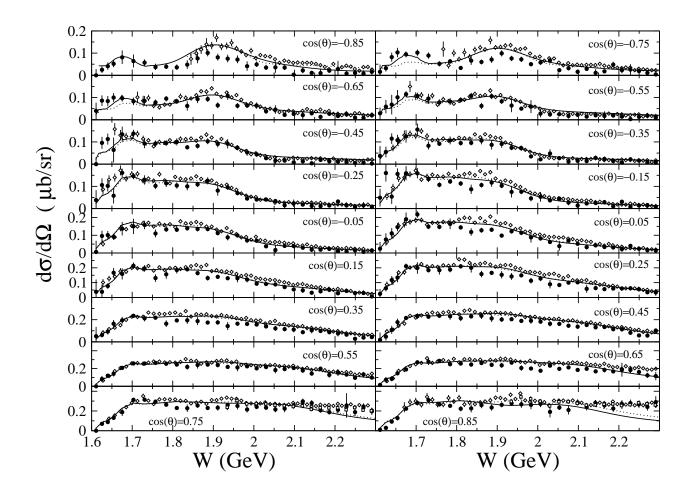

related to hadron structure calculations for interpreting N^* parameters

Selected Recent Results

- 1. $\gamma N \rightarrow \Delta(1232)$ form factors
 - Q^2 -evolution of meson cloud is discovered

• Hadron structure calculations are tested

2. $N-N^*(1440)$ form factors agree with Quark Model



Red curves :S. Capstick and B.D. Keister

Green curves : I. Aznauryan

3. New states at W > 1.7 GeV are suggested

Example: Coupled-channel fit to $\gamma p \rightarrow K^+ \Lambda$ data of JLab (B. Julia-Diaz et al. 2006)

New states	Mass	Width
S_{11}	1.833	0.288
P_{13}	1.974	0.108
D_{13}	1.912	0.316

Several new states have also been suggested in the K-matrix analyses

by Giessen group, GWU group, Bonn-Gatchina group,

CLAS collaboration (JM06)

Note :

 \rightarrow

- Need to be further confirmed by analyses including polarization data and more complete coupled-channel analyses.
- Need to be verified by dynamical model analyses

Necessary next step :

Strengthen the collaborations between

empirical analyses (PWA, K-matrix analyses)

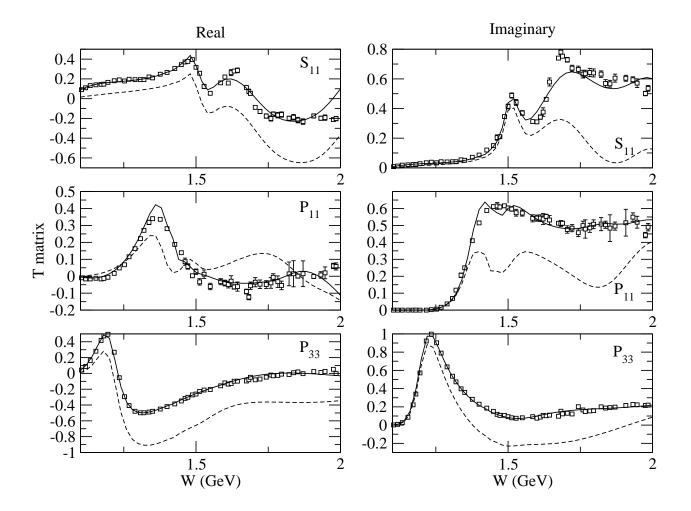
and

theoretical efforts (dynamical models, hadron structure calculations)

 \rightarrow

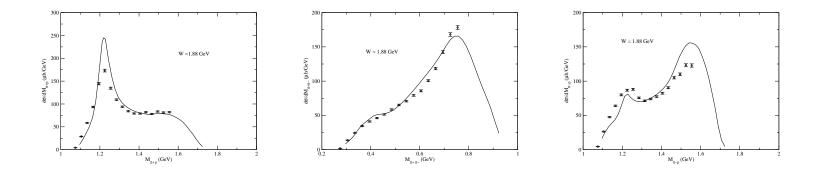
Establish Excited Baryon Analysis Center (EBAC) at the Theory Center of Jefferson Laboratory

Excited Baryon Analysis Center (EBAC)


Theory Center, Jefferson Laboratory

- Established: January, 2006
- Goal : Reach a DOE milestone by 2009

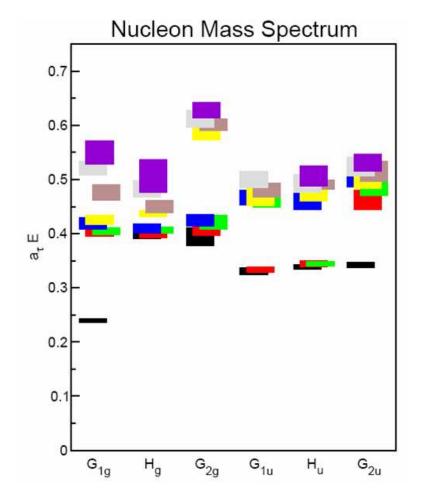
"Complete the combined analysis of available single pion, eta and kaon photo-production data for nucleon resonances and incorporate analysis of two-pion final states into the coupled channel analysis of resonances."


- 1. On-going theoretical projects :
 - Perform Dynamical Coupled-Channel Analysis
 (B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, M. Paris, T. Sato, K. Tsushima)
 - πN , ηN , $\pi \pi N$ production
 - ωN , $K\Lambda$ production
 - Develop collaborations with other theoretical efforts
 - Coupled-channel analysis by the Julich group
 - (J. Haidenbauer, C. Hanhart, S. Krewald, Ulf-G. Meißner,
 - A. Sibirtsev, K. Nakayama, H. Haberzettl)
 - EBAC-Saclay Coupled-channel analysis of η, K photoproduction
 (J.-C. David, J. Durand, Jun He, B. Julia-Diaz, T.-S. H. Lee,
 B. Saghai, T. Sato)

• Fits of πN amplitudes

(dashed curves: N^* contributions)

• Start to analyze $\gamma p \rightarrow \pi^+ \pi^- p$ data of JLab

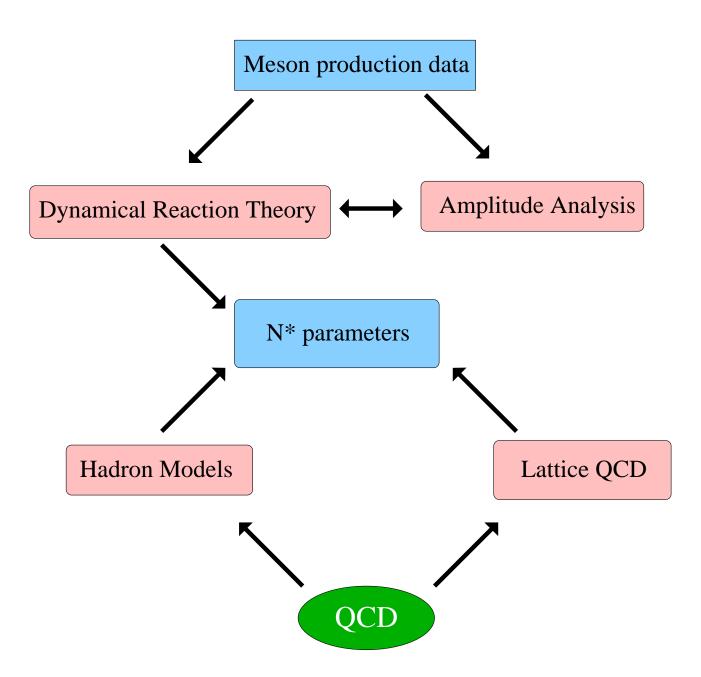

Plans :

- 2007 2008 : Analysis of π , η , $\pi\pi$ production data
- 2008 2009 : full coupled analysis including ω , K production data

- 2. Provide theoretical input to the data analyses by experimental groups
 - Include the coupled-channel effects in the combined analyses of $\pi, \eta, \pi\pi$ production data by CLAS collaboration
 - Collaborations with other experimental groups will be developed
- 3. Projects being developed :
 - Development of reaction models at high Q^2 region, accessible to JLab's 12 GeV upgrade
 - Investigation of the connections with Lattice QCD calculations

Recent LQCD Calculations

(Provided by LHPC)



Question :

How to compared with the extracted N^* resonance energies ?

Dynamical Coupled–Channel Analysis at EBAC

Theory Center, JLAB

