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Lattice chiral symmetry

Continuum:
{D, γ5} = 0

Not possible on lattice without doublers (Nielsen-Ninomiya
theorem)
But: exact chiral symmetry with overlap fermions (Neuberger),
Domain wall fermions (Kaplan),...
Ginsparg-Wilson relation

{γ5,D} = 2Dγ5D



Overlap fermions

Dov(m) = 1 +
m
2ρ

+

(

1 −
m
2ρ

)

γ5 sgn HW

with Hermitian Wilson-Dirac operator

HW = γ5DW (−ρ), ρ ∈ (0,2)

Exact chiral SU(n) × SU(n) × U(1) symmetry for n massless
flavours, e.g.

δψ = γ̂5τψ

δψ̄ = ψ̄γ5τ

with γ̂5 = sgn HW



Numerics

Dov = 1 + γ5 sgn HW

Approximate sgn x by rational
function:

sgn(x) ≈ r(x) = x
∑

i

ρi

x2 + σi

such that | sgn(x) − r(x)| < ǫ

for x ∈ spec HW
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Coefficients ρi , σi known analytically (Zolotarev)
Compute sgn HWψ using multi-mass solver



Cost for applying Dov determined by cond HW

Can be improved by
◮ Projecting out few small eigenvalue/eigenvector pairs
◮ Using an improved gauge action (Iwasaki, Lüscher-Weisz,

DBW2, ...)
◮ Link smearing (Stout, HYP, ...)

Our approach: Construct gauge action from Dov itself



Gauge action from Dov

Classical continuum limit:

trCS
(

Dov(x , x) − Dfree
ov (x , x)

)

= b tr Fµν(x)Fµν(x)

with known coefficient b
Action:

S(U, ψ, ψ̄) = c tr Dov

with

c =
1

2bg2

Numerical value of c(g):

c(g = 1) ≈ 30



Dynamical overlap fermions
Action:

S(U, ψ, ψ̄) = c tr Dov(U) +

nf
∑

i=1

ψ̄iDov(U,m)ψi

Partition function:

Z =

∫

DUDΨ̄DΨe−S(U,Ψ,Ψ̄)

=

∫

DUe−c tr Dov(U)(det Dov(m,U))nf

=

∫

DU det O(U)

with
O(U) = e−cDov(U)Dov(m,U)nf

Introducing pseudofermions:

det O(U) =

∫

DφDφ∗e−(φ,O(U)−1φ)



Hybrid Monte Carlo

Hamiltonian: H(U, φ, π) = S(U, φ) + 1
2(π, π)

Start with gauge field U
◮ Heatbath initialization:

P(π) ∼ e−
1
2 (π,π)

P(η) ∼ e−(η,η) , φ := O1/2η

◮ Molecular dynamics evolution:
Integrate Hamiltonian equations numerically, obtain U ′, π′

Can use low-precision approximation here

U̇ = π

π̇ = −
∂

∂U
S

= −

(

O−1φ,
∂O
∂U

O−1φ

)



HMC

◮ Metropolis step:
Compute δH = H(U ′, π′) − H(U, π)
Accept U’ with probability

p = max
(

1,e−δH
)

Need to compute:
◮ O(U)1/2ψ (in heatbath)
◮ O(U)−1ψ (in molecular dynamics, Metropolis step)

where

O(U) = f (M(U))

M(U) = Dov(U)†Dov(U)

f (x) = e−
1
2 cx

(

(1 − m2)x + 4m2
)nf



Rational HMC

RHMC algorithm(Clark, Kennedy): Approximate f (x)−1, f (x)1/2

by rational functions:

f (x)−1 ≈ ri(x) =
∑

i

αi

βi + x

f (x)1/2 ≈ rs(x) =
∑

i

α′
i

β′i + x

Coefficients αi , βi , α
′
i , β

′
i : Remez algorithm

Compute r(M)ψ using multi-shift conjugate gradient
Coefficients βi not always real
→ can use 3-term CG



RHMC

Problem: condition number of O huge

Coefficients |αi |:
(c = 25,d = 11)
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f (0) = O(1) → enormous loss of precision
Possible solution (Clark, Kennedy):

det O =
(

det(O
1
n )

)n

=

∫

dΦ1 . . .

∫

dΦne
P

i (φi ,O
−

1
n φi )

Coefficients |αi |:
(c = 25,d = 11,n = 6)
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RHMC

Pseudofermion heatbath:

φi =
∑

j

α′
j

M + β′j
ηi

Molecular dynamics:

∂S
∂U

= −
∑

i,j

αi

(

(M + β∗)−1φj ,
∂M
∂U

(M + β)−1φj

)

Hamiltonian:

H =
∑

i,j

(

φi ,
αj

M + βj
φi

)

+ 1
2(π, π)



Overlap Derivative

“Inner” derivative: Need to compute
(

χ′,
∂

∂U
Dovχ

)

=

(

χ′, γ5
∂

∂U
sgn HWχ

)

Derivative of rational approximation(Fodor et al, Cundy):

sgn x ≈ r(x) = x
∑

i

ρi

x2 + σi

∂r(HW )

∂U
=

∑

i

ρi(H
2
W +σi)

−1
[

σi
∂HW

∂U
− HW

(

∂HW

∂U

)

HW

]

(H2
W +σi)

−1



Eigenvalue zero crossings

Dov(U) discontinuous w.r.t. U
Different possibilities to treat discontinuity:

◮ Ignore it
Correct algorithm, but no acceptance → inefficient

◮ Reflection/refraction step (Fodor et al.): Treat derivative
exactly

◮ Use smooth approximation of sign function

If gauge action suppresses rough gauge fields, there should be
no crossings anyway → topological charge remains fixed
Ergodicity?



Eigenvalue zero crossings

Our choice: Approximate sign function smoothly during
molecular dynamics:
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Heatbath/Metropolis Molecular dynamics
Does not give satisfactory acceptance unless τ small enough:
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Test results

Simulation parameters:

V = 84

ρ = 1.8

am = 0.5

τMD = 0.01

c ∈ {25,35,45}

a = ?



Energy conservation violation

δH = H(U ′, π′) − H(U, π)

c = 35,45:
◮ δH acceptable for
τ = 0.01

◮ δH ∼ τ2

c = 25:
◮ δH huge (O(105))

whenever eigenvalue
crosses zero

◮ δH ≈ 1 would require
very small τ
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Spectral density

ρ(HW ) spectral density of HW

c = 35,45:
◮ Gap around zero

c = 25:
◮ ρ(0) > 0
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Summary

◮ Simulation of overlap gauge action possible with RHMC...
◮ ... but expensive
◮ Need to find c corresponding to a ≈ 0.1fm
◮ Need better algorithm to treat zero crossings
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