Simulating a gauge action from the Overlap Operator with RHMC

T. Streuer

Work with

A.Alexandru, I. Horváth, K.F. Liu

University of Kentucky

April 21, 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction

Overlap gauge action

RHMC

Test results

Lattice chiral symmetry

Continuum:

$$\{D,\gamma_5\}=0$$

Not possible on lattice without doublers (Nielsen-Ninomiya theorem)

But: exact chiral symmetry with overlap fermions (Neuberger), Domain wall fermions (Kaplan),...

Ginsparg-Wilson relation

$$\{\gamma_5, D\} = 2D\gamma_5 D$$

Overlap fermions

$$D_{
m ov}(m) = 1 + rac{m}{2
ho} + \left(1 - rac{m}{2
ho}
ight) \gamma_5\,{
m sgn}\,H_W$$

with Hermitian Wilson-Dirac operator

$$H_W = \gamma_5 D_W(-
ho),
ho \in (0,2)$$

Exact chiral $SU(n) \times SU(n) \times U(1)$ symmetry for *n* massless flavours, e.g.

$$\begin{array}{rcl} \delta\psi &=& \hat{\gamma}_{5}\tau\psi \\ \delta\bar{\psi} &=& \bar{\psi}\gamma_{5}\tau \end{array}$$

with $\hat{\gamma}_5 = \operatorname{sgn} H_W$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

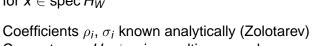
Numerics

 $D_{\rm ov} = 1 + \gamma_5 \operatorname{sgn} H_W$

Approximate sgn *x* by rational function:

$$\operatorname{sgn}(x) \approx r(x) = x \sum_{i} \frac{\rho_i}{x^2 + \sigma_i}$$

such that $|\operatorname{sgn}(x) - r(x)| < \epsilon$ for $x \in \operatorname{spec} H_W$



0.5

-0.5

・ コット (雪) ・ (目) ・ (目)

Compute sgn $H_W \psi$ using multi-mass solver

Cost for applying D_{ov} determined by cond H_W Can be improved by

- Projecting out few small eigenvalue/eigenvector pairs
- Using an improved gauge action (Iwasaki, Lüscher-Weisz, DBW2, ...)

(日) (日) (日) (日) (日) (日) (日)

Link smearing (Stout, HYP, ...)

Our approach: Construct gauge action from D_{ov} itself

Gauge action from $D_{\rm ov}$

Classical continuum limit:

$${
m tr}_{
m CS}\left({
m \textit{D}}_{
m ov}({m x},{m x})-{
m \textit{D}}_{
m ov}^{
m free}({m x},{m x})
ight)={m b}\,{
m tr}\,{
m \textit{F}}_{\mu
u}({m x}){
m \textit{F}}_{\mu
u}({m x})$$

with known coefficient *b* Action:

$$S(U,\psi,ar{\psi})=c\,{
m tr}\,D_{
m ov}$$

with

$$c = \frac{1}{2bg^2}$$

Numerical value of c(g):

$$c(g=1) \approx 30$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Dynamical overlap fermions Action:

$$S(U, \psi, \bar{\psi}) = c \operatorname{tr} D_{\operatorname{ov}}(U) + \sum_{i=1}^{n_f} \bar{\psi}_i D_{\operatorname{ov}}(U, m) \psi_i$$

Partition function:

$$Z = \int DUD\bar{\Psi}D\Psi e^{-S(U,\Psi,\bar{\Psi})}$$

= $\int DUe^{-c \operatorname{tr} D_{ov}(U)} (\det D_{ov}(m,U))^{n_f}$
= $\int DU \det O(U)$

with

$$\mathsf{O}(U)=e^{-c\mathcal{D}_{\mathrm{ov}}(U)}\mathcal{D}_{\mathrm{ov}}(m,U)^{n_{\mathrm{f}}}$$

Introducing pseudofermions:

$$\det O(U) = \int D\phi D\phi^* e^{-(\phi, O(U)^{-1}\phi)}$$

Hybrid Monte Carlo

Hamiltonian: $H(U, \phi, \pi) = S(U, \phi) + \frac{1}{2}(\pi, \pi)$ Start with gauge field U

Heatbath initialization:

$$egin{aligned} & {\cal P}(\pi) & \sim & {f e}^{-rac{1}{2}(\pi,\pi)} \ {\cal P}(\eta) & \sim {f e}^{-(\eta,\eta)} & , & \phi := {f O}^{1/2} \eta \end{aligned}$$

 Molecular dynamics evolution: Integrate Hamiltonian equations numerically, obtain U', π' Can use low-precision approximation here

$$\begin{aligned} \dot{U} &= \pi \\ \dot{\pi} &= -\frac{\partial}{\partial U} S \\ &= -\left(O^{-1}\phi, \frac{\partial O}{\partial U}O^{-1}\phi\right) \end{aligned}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

HMC

 Metropolis step: Compute δH = H(U', π') – H(U, π) Accept U' with probability

$$p = \max\left(1, e^{-\delta H}\right)$$

Need to compute:

• $O(U)^{1/2}\psi$ (in heatbath)

• $O(U)^{-1}\psi$ (in molecular dynamics, Metropolis step) where

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Rational HMC

RHMC algorithm(Clark, Kennedy): Approximate $f(x)^{-1}$, $f(x)^{1/2}$ by rational functions:

$$f(\mathbf{x})^{-1} \approx r_i(\mathbf{x}) = \sum_i \frac{\alpha_i}{\beta_i + \mathbf{x}}$$
$$f(\mathbf{x})^{1/2} \approx r_s(\mathbf{x}) = \sum_i \frac{\alpha'_i}{\beta'_i + \mathbf{x}}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Coefficients $\alpha_i, \beta_i, \alpha'_i, \beta'_i$: Remez algorithm Compute $r(M)\psi$ using multi-shift conjugate gradient Coefficients β_i not always real \rightarrow can use 3-term CG

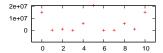
RHMC

Problem: condition number of O huge

 $f(0) = O(1) \rightarrow$ enormous loss of precision Possible solution (Clark, Kennedy):

$$\det O = \left(\det(O^{\frac{1}{n}})\right)^n$$
$$= \int d\Phi_1 \dots \int d\Phi_n e^{\sum_i (\phi_i, O^{-\frac{1}{n}}\phi_i)}$$

Coefficients $|\alpha_i|$: (c = 25, d = 11, n = 6)



・ロット (雪) (日) (日)

ъ

RHMC

Pseudofermion heatbath:

$$\phi_i = \sum_j \frac{\alpha'_j}{M + \beta'_j} \eta_i$$

Molecular dynamics:

$$\frac{\partial S}{\partial U} = -\sum_{i,j} \alpha_i \left((M + \beta^*)^{-1} \phi_j, \frac{\partial M}{\partial U} (M + \beta)^{-1} \phi_j \right)$$

Hamiltonian:

$$H = \sum_{i,j} \left(\phi_i, \frac{\alpha_j}{M + \beta_j} \phi_i \right) + \frac{1}{2} (\pi, \pi)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overlap Derivative

"Inner" derivative: Need to compute

$$\begin{pmatrix} \chi', \frac{\partial}{\partial U} D_{\text{ov}} \chi \end{pmatrix}$$

$$= \left(\chi', \gamma_5 \frac{\partial}{\partial U} \operatorname{sgn} H_W \chi \right)$$

Derivative of rational approximation(Fodor et al, Cundy):

$$\operatorname{sgn} x \approx r(x) = x \sum_{i} \frac{\rho_{i}}{x^{2} + \sigma_{i}}$$
$$\frac{\partial r(H_{W})}{\partial U} = \sum_{i} \rho_{i} (H_{W}^{2} + \sigma_{i})^{-1} \left[\sigma_{i} \frac{\partial H_{W}}{\partial U} - H_{W} \left(\frac{\partial H_{W}}{\partial U} \right) H_{W} \right] (H_{W}^{2} + \sigma_{i})^{-1}$$

Eigenvalue zero crossings

$D_{ov}(U)$ discontinuous w.r.t. U Different possibilities to treat discontinuity:

- Ignore it Correct algorithm, but no acceptance → inefficient
- Reflection/refraction step (Fodor et al.): Treat derivative exactly
- Use smooth approximation of sign function

If gauge action suppresses rough gauge fields, there should be no crossings anyway \rightarrow topological charge remains fixed Ergodicity?

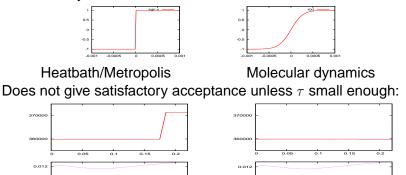
<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Eigenvalue zero crossings

a00.0

 $\tau = 0.01$

Our choice: Approximate sign function smoothly during molecular dynamics:



0.006

0

 $\tau = 0.001$ for t > 0.17

Test results

Simulation parameters:

$$V = 8^4$$

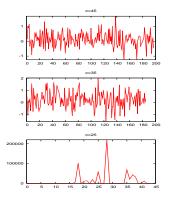
 $ho = 1.8$
 $am = 0.5$
 $au_{MD} = 0.01$
 $c \in \{25, 35, 45\}$
 $a = ?$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Energy conservation violation

$$\delta H = H(U', \pi') - H(U, \pi)$$

- c = 35, 45:
 - δH acceptable for τ = 0.01
 - ► $\delta H \sim \tau^2$
- c = 25:
 - δH huge (O(10⁵)) whenever eigenvalue crosses zero
 - δH ≈ 1 would require very small τ



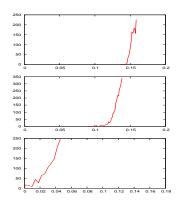
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Spectral density

 $\rho(H_W)$ spectral density of H_W

- c = 35, 45:
 - Gap around zero
- c = 25:

▶ ρ(0) > 0



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Summary

Simulation of overlap gauge action possible with RHMC...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- ... but expensive
- Need to find c corresponding to a ≈ 0.1fm
- Need better algorithm to treat zero crossings