### Insights into Hadron Structure through Lattice QCD



efferson Pat



#### **Anthony W. Thomas**

#### Festschrift for Keh-Fei Liu Lexington KY : April 19<sup>th</sup> 2007

Thomas Jefferson National Accelerator Facility



# Outline

- Quantum Chromodynamics
- Lattice QCD : there are problems ⇒ new opportunities!



(and, by the way, some things CAN be calculated ACCURATELY)

•  $M_N, M_\Delta, QQCD \iff QCD \iff pQQCD, m_\rho;$ 

 $[\mathbf{g}_{\mathsf{A}}, \ \mu_{\mathsf{B}}, \mathbf{G}_{\mathsf{E},\mathsf{M}}^{\mathsf{s}}]$ 

• Something different to end!







# **Advances in Lattice QCD**





Office of Science

**U.S. DEPARTMENT OF ENERG** 

Thomas Jefferson National Accelerator Facility

# What are we aiming to do??

• Test whether  $\chi$  `al EFT can describe the lattice data

Hopeless for traditional dim-reg  $\chi$  PT !

- Extrapolate the lattice data to the physical quark mass in order to compare with experimental data
  - a) Anything would work.... (g<sub>A</sub>)
    b) Stop expansion when you get the "right" answer
    c) Use FRR

• not quite sure.....





Thomas Jefferson National Accelerator Facility

#### **χ'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon**



FRR give same answer to <<1% systematic error!

|                | Bare Coefficients |                 |                 |     | Renormalized Coefficients |          |          |           |
|----------------|-------------------|-----------------|-----------------|-----|---------------------------|----------|----------|-----------|
| Regulator      | $a_0^{\Lambda}$   | $a_2^{\Lambda}$ | $a_4^{\Lambda}$ | Λ   | $c_0$                     | $c_2$    | $c_4$    | $m_N$     |
| Monopole       | 1.74              | 1.64            | -0.49           | 0.5 | 0.923(65)                 | 2.45(33) | 20.5(15) | 0.960(58) |
| Dipole         | 1.30              | 1.54            | -0.49           | 0.8 | 0.922(65)                 | 2.49(33) | 18.9(15) | 0.959(58) |
| Gaussian       | 1.17              | 1.48            | -0.50           | 0.6 | 0.923(65)                 | 2.48(33) | 18.3(15) | 0.960(58) |
| Sharp cutoff   | 1.06              | 1.47            | -0.55           | 0.4 | 0.923(65)                 | 2.61(33) | 15.3(8)  | 0.961(58) |
| Dim. Reg. (BP) | 0.79              | 4.15            | +8.92           | _   | 0.875(56)                 | 3.14(25) | 7.2(8)   | 0.923(51) |

einweber et al., PRL 92 (2004) 24200 ■ Thomas Jefferson National Accelerator Facility



Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson

# **Extrapolation of Masses**

At "large  $m_{\pi}$ " preserve observed linear (constituent-quark-<u>like</u>) behaviour:  $M_{H} \sim m_{\pi}^{2}$ 

As  $m_{\pi} \sim 0$  : ensure LNA & NLNA behaviour: Ν Ν Ν Λ (**BUT** must die as  $(\Lambda / m_{\pi})^2$  for  $m_{\pi} > \Lambda$ ) (b)(a) Hence use: N Λ Λ Λ  $M_{\rm H} = a_0 + a_2 m_{\pi}^2 + a_4 m_{\pi}^4 + \sigma_{\rm LNA}(m_{\pi},\Lambda) + \sigma_{\rm NLNA}(m_{\pi},\Lambda)$ (d)• Evaluate self-energies with form factor, "finite range regulator", FRR, with  $\Lambda \sim 1/Size$  of Hadron Office o ellerson C

DEPARTMENT OF ENERGY

#### **χ'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon**



FRR give same answer to <<1% systematic error!

|                | Bare Coefficients |                 |                 |     | Renormalized Coefficients |          |          |           |
|----------------|-------------------|-----------------|-----------------|-----|---------------------------|----------|----------|-----------|
| Regulator      | $a_0^{\Lambda}$   | $a_2^{\Lambda}$ | $a_4^{\Lambda}$ | Λ   | $c_0$                     | $c_2$    | $c_4$    | $m_N$     |
| Monopole       | 1.74              | 1.64            | -0.49           | 0.5 | 0.923(65)                 | 2.45(33) | 20.5(15) | 0.960(58) |
| Dipole         | 1.30              | 1.54            | -0.49           | 0.8 | 0.922(65)                 | 2.49(33) | 18.9(15) | 0.959(58) |
| Gaussian       | 1.17              | 1.48            | -0.50           | 0.6 | 0.923(65)                 | 2.48(33) | 18.3(15) | 0.960(58) |
| Sharp cutoff   | 1.06              | 1.47            | -0.55           | 0.4 | 0.923(65)                 | 2.61(33) | 15.3(8)  | 0.961(58) |
| Dim. Reg. (BP) | 0.79              | 4.15            | +8.92           | _   | 0.875(56)                 | 3.14(25) | 7.2(8)   | 0.923(51) |

einweber et al., PRL 92 (2004) 24200 ■ Thomas Jefferson National Accelerator Facility



Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson

### **Power Counting Regime**

Ensure coefficients  $c_0$ ,  $c_2$ ,  $c_4$  all identical to 0.8 GeV fit



#### Leinweber, Thomas & Young, hep-lat/0501028



Thomas Jefferson National Accelerator Facility



# Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

| Regulator | LNA | NLNA |
|-----------|-----|------|
| Sharp     | 968 | 961  |
| Monopole  | 964 | 960  |
| Dipole    | 963 | 959  |
| Gaussian  | 960 | 960  |
| Dim Reg   | 784 | 884  |

#### $M_N$ in MeV



**Thomas Jefferson National Accelerator Facility** 



### McGovern & Birse: hep:lat/0608002

Fit data below 0.6 GeV by adjusting M<sub>0</sub>, e' and c<sub>1</sub> to fit M<sub>N</sub><sup>phys</sup>



#### Low energy constant, e', quite different at 4<sup>th</sup> and 5<sup>th</sup> order...



**Thomas Jefferson National Accelerator Facility** 



# McGovern & Birse (cont.)

- First to calculate two-loop, dim-reg  $\chi$  PT
- Major correction is  $m_{\pi}$  dependence of  $g_{\pi NN}$ i.e. origin of GT discrepancy :  $g_{\pi NN} \neq g_A/f_{\pi}$
- Leads to large Order ( $m_{\pi}^{5}$ ) term
- Agree that convergence of formal chiral expansion is hopeless where current lattice data exists M<sub>N</sub> = 0.885 + 3.20m<sub>π</sub><sup>2</sup> 5.6m<sub>π</sub><sup>3</sup> + 34 m<sub>π</sub><sup>4</sup> (50-110)m<sub>π</sub><sup>5</sup> ... c.f. FRR fit required to include physical nucleon mass:

 $M_N = 0.897 + 2.83m_{\pi}^2 - 5.6m_{\pi}^3 + 22m_{\pi}^4 - (44 \pm 18)m_{\pi}^5 \dots$ 

Leinweber et al., Lect. Notes in Phys. 663 (2005) 113

Thomas Jefferson National Accelerator Facility



Operated by Jefferson Science Associates for the U.S. Department of Energy

Morson (

### FRR works because...

It preserves model independent LNA and NLNA behavior

 Form factor naturally yields GT discrepancy of right sign and magnitude – and therefore correct m<sub>π</sub><sup>5</sup> term!
 i.e. correct NNLNA behavior

• N.B. Usual EFT yields this term only at two loops

• For sound physical reasons, FRR suppresses meson loops once  $m_{\pi}$  exceeds about 0.4 GeV

 Yields convergent series expansion over mass region covered by lattice data





**Thomas Jefferson National Accelerator Facility** 

# Comparison with $\chi$ QSM and CBM



#### CBM: Leinweber et al., Phys.Rev.D61:074502,2000



Thomas Jefferson National Accelerator Facility



# Analysis of pQQCD $\rho$ data from CP PACS i.e. $m_{val} \neq m_{sea}$



Fit with:  $\sqrt{(M_V^{deg})^2 - \Sigma_{TOT}} = (a_0^{cont} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{deg})^2 + a_4 (M_{PS}^{deg})^4 + a_6 (M_{PS}^{deg})^6$ 



**Thomas Jefferson National Accelerator Facility** 



# FRR Mass (in $\Sigma_{TOT}$ ) well determined by data



$$\sqrt{(M_V^{deg})^2 - \Sigma_{TOT}} = (a_0^{cont} + X_1 a + X_2 a^2) + a_2 (M_{PS}^{deg})^2 + a_4 (M_{PS}^{deg})^4 + a_6 (M_{PS}^{deg})^6$$



Thomas Jefferson National Accelerator Facility



# Infinite Volume Unitary Results $a \rightarrow 0$ and $m_{sea} = m_{val}$

All 80 data points drop onto single, well defined curve !





Thomas Jefferson National Accelerator Facility



### **Baryon Masses in Quenched QCD**

Chiral behaviour in QQCD quite different from full QCD

 $\eta^\prime$  is an additional Goldstone Boson , so that:



origin is  $\eta'$  double pole



Thomas Jefferson National Accelerator Facility



•Lattice data (from MILC Collaboration) : red triangles •Green boxes: fit evaluating  $\sigma$ 's on same finite grid as lattice •Lines are exact, continuum results



### $\Delta$ in QQCD



**U.S. DEPARTMENT OF ENERGY** 

### Confirmation of Predicted Behavior of $\Delta$



#### Zanotti et al., hep-lat/0407039



Thomas Jefferson National Accelerator Facility



### These results suggest following conjecture :

IF lattice scale is set using static quark potential (e.g. Sommer scale) (insensitive to chiral physics)

Suppression of Goldstone loops for  $m_{\pi} > \Lambda$  implies: Analytic terms (e.g.  $\alpha + \beta m_{\pi}^2 + \gamma m_{\pi}^4$ ) representing "hadronic core" are the same in QQCD & QCD

Can then correct QQCD results by replacing LNA & NLNA behaviour in QQCD by corresponding terms in full QCD

#### Quenched QCD is then no longer an "uncontrolled approximation" !





Thomas Jefferson National Accelerator

### **Strangeness Widely Believed to** Play a Major Role – Does It?

• As much as 100 to 300 MeV of proton mass:

$$M_N = \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi} \operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u\bar{\psi}_u\psi_u + m_d\bar{\psi}_d\psi_d + m_s\bar{\psi}_s\psi_s|N(P)\rangle$$

 $y=0.2 \pm 0.2$ ?

 $45 \pm 8$  MeV (or 70?)

Hence 110  $\pm$  110 MeV (increasing to 180 for higher  $\sigma_{N}$ )

 $\Delta M_N^{s-\text{quarks}} = \frac{y \overline{m}_s}{m_u + m_d} \,\sigma_N$ 

 Through proton spin crisis: As much as 10% of the spin of the proton

#### HOW MUCH OF THE ELECTRIC and MAGNETIC **FORM FACTORS**? ellerson C



Science Associates for the U.S. Department of Energy



# **MIT-Bates & A4 at Mainz**









Thomas Jefferson National Accelerator Facility



### **G0 and HAPPEx at Jlab**



Direct calculation pioneered by Keh-Fei and collaborators BUT very difficult

Instead try indirect method...





Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson P



# Accurate Final Result for G<sub>M</sub><sup>s</sup>



1.25±0.12

#### Yields : $G_{M}^{s}$ = -0.046 ± 0.019 $\mu_{N}$



einweber et al., (PRL June '05) hep-lat/040600





# **u<sup>p</sup>**<sub>valence</sub> : QQCD Data Corrected for Full QCD Chiral Coefficients



#### New lattice data from Zanotti et al. ; Chiral analysis Leinweber et al.



Thomas Jefferson National Accelerator









Thomas Jefferson National Accelerator



### Convergence LNA to NLNA Again Excellent (Effect of Decuplet)





**Thomas Jefferson National Accelerator Facility** 



# **State of the Art Magnetic Moments**

|                | QQCD       | Valence    | Full QCD   | Expt.       |
|----------------|------------|------------|------------|-------------|
| р              | 2.69 (16)  | 2.94 (15)  | 2.86 (15)  | 2.79        |
| n              | -1.72 (10) | -1.83 (10) | -1.91 (10) | -1.91       |
| Σ+             | 2.37 (11)  | 2.61 (10)  | 2.52 (10)  | 2.46 (10)   |
| Σ-             | -0.95 (05) | -1.08 (05) | -1.17 (05) | -1.16 (03)  |
| Λ              | -0.57 (03) | -0.61 (03) | -0.63 (03) | -0.613 (4)  |
| <b>Ξ</b> 0     | -1.16 (04) | -1.26 (04) | -1.28 (04) | -1.25 (01)  |
| Ξ              | -0.65 (02) | -0.68 (02) | -0.70 (02) | -0.651 (03) |
| u <sup>p</sup> | 1.66 (08)  | 1.85 (07)  | 1.85 (07)  | 1.81 (06)   |
| u <sup>E</sup> | -0.51 (04) | -0.58 (04) | -0.58 (04) | -0.60 (01)  |



**Thomas Jefferson National Accelerator Facility** 



**G<sub>F</sub>**<sup>s</sup> by similar technique In this case only know  $\Sigma^2$  radius (and p and n) hence use absolute values of u and d radii:  $p + 2n = d^{p} + 3 O_{N}$  $2p + n = u^{p} + 3O_{N}$  $\Rightarrow \langle r^2 \rangle_s = 0.000 \pm 0.006 \pm 0.007 \text{ fm}^2$ ;  $0.002 \pm 0.004 \pm 0.004 \text{ fm}^2$ (c.f. using  $\Sigma^-$ : -0.007 ± 0.004 ± 0.007 ± 0.021 fm<sup>2</sup>)

 $G_E^s(0.1 \,\mathrm{GeV}^2) = +0.001 \pm 0.004 \pm 0.004$ 

(up to order Q<sup>4</sup>)

Note consistency and level of precision!

Leinweber, Young et al., hep-lat/0601025 (Jan 2006)

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates for the U.S. Department of Energy

ellerson (



### **Model Independent Constraint Again Satisfied**



Leinweber, RDY et al. hep-lat/0601025



Thomas Jefferson National Accelerator Facility



Young, Roche, Carlini, Thomas – nucl-ex/0604010 (PRL, Sept. 2006)



Science

Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Superimpose NEW HAPPEx Measurement (Dallas APS meeting, April 06)



**Office of** 

Science

U.S. DEPARTMENT OF ENERGY

Include new HAPPEx data : halves errors of previous world data !



#### **Strange Form Factor Measurements – Future Plans**

HAPPEx: "HAPPEx3" measure  $G_{E}^{s}$  + 0.48 $G_{M}^{s}$  with high precision at Q<sup>2</sup>~0.6 GeV<sup>2</sup>

#### **G**<sup>0</sup>: Turn experiment around

detect electrons at θ = 108°
add Cerenkov for pion rejection
measure at Q<sup>2</sup> = .23 and .63 GeV<sup>2</sup>
LH<sub>2</sub> and LD<sub>2</sub> targets

#### Mainz A4: Turn experiment around

•detect electrons at θ = 145°
• Measure at Q<sup>2</sup> = .23 and .47 GeV<sup>2</sup>

• LH<sub>2</sub> and LD<sub>2</sub> targets









**from Mark Pitt** Thomas Jefferson National Accelerator Facility

#### Previously: Saw Precision of PVES for Strange Form Factors



#### Can we achieve meaningful accuracy in testing Standard Model now?



Thomas Jefferson National Accelerator Facility



# New update on $C_{1q}$ couplings – Dec 2006



(Young, Carlini, Roche and AWT)

Dramatic improvement in knowledge of weak couplings!

Factor of 5 increase in precision of Standard Model test



**Thomas Jefferson National Accelerator Facility** 

Operated by Jefferson Science Associates for the U.S. Department of Energy

Sefferson Pal

# **Model-independent limits on New Physics**

$$\mathcal{L}_{SM}^{PV} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_{q} C_{1q}^{SM} \bar{q} \gamma^{\mu} q$$
Erler et al., PR D68 (2003)
$$\mathcal{L}_{NP}^{PV} = \frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_{q} h_V^q \bar{q} \gamma^{\mu} q$$
Full isospin coverage for limits on new physics!
$$h_V^u = \cos \theta_h \qquad h_V^d = \sin \theta_h$$
Data sets limits on  $\frac{g^2}{\Lambda^2}$ 

**U.S. DEPARTMENT OF ENERGY** 

# Lower bound on scale of New Physics



Young et al. (Dec 2006)

### New physics scale >0.9 TeV! (up from 0.4 TeV)



**Thomas Jefferson National Accelerator Facility** 



# Q<sub>weak</sub> Apparatus



**Thomas Jefferson National Accelerator Facility** 



Operated by the Southeastern Universities Research Association for the U.S. Department of Energy

Jefferson Pab

### **Possible Impact of Qweak**





**Thomas Jefferson National Accelerator Facility** 



### New Physics Limits (if result consistent with Standard Model)



Qweak constrains new physics to beyond 2 TeV



Young et al. (Dec 2006)



# **But: Q<sub>weak</sub> has real discovery potential!**





**Thomas Jefferson National Accelerator Facility** 



**U.S. DEPARTMENT OF ENERG** 



• Wonderful synergy between experimental advances at Jlab and progress using Lattice QCD to solve QCD

 Study of hadron properties as function of m<sub>q</sub> using data from lattice QCD is extremely valuable..... (major qualitative advance in understanding)
 + TEST BEYOND STANDARD MODEL

• Inclusion of model independent constraints of  $\chi$  PT to get to physical quark mass is essential FRR  $\chi$ PT resolves problem of convergence

• Insight enables: accurate, controlled extrapolation of all hadronic observables....

(e.g.  $m_H$ ,  $\mu_H$ ,  $G_{E,M}^{s}$ ,  $\langle r^2 \rangle_{ch}$ ,  $G_E, G_M$ ,  $\langle x^n \rangle_{....}$ )





# Conclusions....<sub>2</sub>

- In case where chiral coefficients are known, FRR enables accurate extrapolation to physical point
- Without chiral coefficients (e.g. spectroscopy of baryons and mesons) need data at very low pion mass (several points below  $\sim$  0.25 GeV)
- It is a major challenge to obtain a reliable signal for "disconnected" loops <u>directly</u> in lattice QCD — this is a very important challenge
- For future there is a wonderful synergy with 12 GeV program at JLab and work on GPDs, form factors at high Q<sup>2</sup>, and higher moments of PDFs just beginning.....





Thomas Jefferson National Accelerator Facility

# **Special Mentions.....**



**Derek Leinweber** 





**Ross Young** 

#### **Congratulations and Best Wishes Keh-Fei!!**



Thomas Jefferson National Accelerator







Thomas Jefferson National Accelerator Facility