Ch 7: **CIRCULAR MOTION**

So far we've done:

1) **LINEAR (STRAIGHT LINE) MOTION** *(1-D)*
2) **PROJECTILE MOTION - TRAJECTORIES** *(2-D)*

And we considered "point objects".

Now we come to finite size objects.

These can rotate about an axis or axle—**circular motion**.

E.g. — the wheel!

It's a very special type of motion.

We need to look at the quantities used to describe circular motion.
Consider a disc of radius R.

- All the way round is 360°.
- Distance $2\pi R$.

- Half-way is 180°.
- Distance πR.

- Quarter is 90°.
- Distance $\frac{\pi R}{2}$.
WHAT IS THE LENGTH FOR θ DEGREES?

KNOWN AS THE ARC LENGTH, S (IE. HOW FAR HAS AN ANT WALKED)

IF 360° IS $S = 2\pi R$

THEN 1° IS $S = \frac{2\pi R}{360}$

SO θ° IS $S = \frac{2\pi \theta R}{360}$ (HORRIBLE!)

REWRITE AS $S = \frac{\theta R}{\left(\frac{360^\circ}{2\pi}\right)}$

WHAT IS THE ANGLE FOR WHICH $S = R$?

ANSWER: WHEN $\theta/(360^\circ/2\pi) = 1$

OR $\theta = \frac{360^\circ}{2\pi} \approx 57^\circ$
These expressions become much more elegant if we define (and use) a new unit of angular measure: the radian.

2 radians is the angle for which $s = r$.

Definition of the radian:

1 radian $\approx 57^\circ$.

If θ is in radians:

$S = R\theta$

$\theta = \frac{S}{R}$

Dimensionless — but we still say rads.
If θ is in radians:

$$s = r \theta$$

$$\theta = \frac{s}{r}$$

Dimensionless — but we still say Rads
How many radians make a full circle?

Use $s = r\theta = \theta r$ with $s = c = 2\pi r$.

So $\theta = 2\pi$ is a full circle.

So $90^\circ = \frac{\pi}{2}$ radians \((\frac{\pi}{4})\).

180° = \pi radians.

270° = \frac{3}{2}\pi radians.
SO FAR STATIONARY OBJECTS

NOW CIRCULAR MOTION

E.G. EARTH ORBITING THE SUN

OR: A ROTATING WHEEL

LET'S CONSIDER A ROTATING DISC:

WE COULD DESCRIBE ITS MOTION BY THE NUMBER OF TURNS IT MAKES PER SECOND

BUT THERE IS A MORE USEFUL DESCRIPTION!
ROTATING DISC

WHAT IS THE SPEED ON THE EDGE OF THE DISC?

IT TRAVELS s IN t SECONDS.

$$v = \frac{s}{t}$$

WHAT IS THE SPEED OF A POINT FURTHER IN AT s'?

FOR s' IN THE SAME t.

$$v' = \frac{s'}{t}$$

BUT $s' < s$ SO $v' \neq v$.
So if we want to describe the motion of all points on the disc, the speed \(u \) of a point is not a universal quantity.

N.B.: For straight line motion of a finite sized body, the speed \(u \) is the same for all points of the body.

But the two points at \(R \) and \(r \) do have something in common:

- The angle that both \(\theta \) and \(r \) sweep out in a given time \(\tau \) is the same.

And:

\[
\frac{\theta}{t} \text{ is the same for all points on the disc.}
\]
WE DEFINE THE ANGULAR VELOCITY \(\omega \) BY:

\[
\omega = \frac{\Delta \theta}{\Delta t}
\]

\(\Delta \theta \) IS SWEEP OUT IN TIME \(\Delta t \)

\(\Delta \theta = \theta_f - \theta_i \)

TRUE IF ROTATING AT CONSTANT \(\omega \) (ANGULAR VELOCITY).

IF \(\omega \neq \text{CONST} \) IN TIME

\[
\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}
\]

AVGVERAGE \(\overline{\omega} = \frac{\Delta \theta}{\Delta t} \)

UNITS OF \(\omega \): RADIANS/SEC.
What is the relationship between the arc length s swept out in t and ω?

We have: $s = r \theta$

So $\Delta s = r \Delta \theta$

Also, the speed (m/s) of a point at P is:

$\omega = \frac{\Delta s}{\Delta t} = \frac{r \Delta \theta}{\Delta t} = r \omega$

$\therefore \omega = \frac{U}{r}$

$U = r \omega$ \hspace{1cm} or \hspace{1cm} $\omega = \frac{U}{r}$

U is the tangential velocity

(ie the point at P stays a fixed distance r from the center)
ONE MORE THING ABOUT ω:

How long to make one complete turn, or revolution?

ω is radians/sec ($\frac{1}{\omega}$ is sec/rad)

One revolution is 2π radians

So $2\pi \times \frac{1}{\omega}$ is time for 1 rev

$$T = \frac{2\pi}{\omega} = \text{period}$$
Angular Acceleration

If angular velocity \(\omega \) is not constant in time we can define an:

\[\text{Angular Acceleration} = \dot{\omega} \]

If \(\dot{\omega} \) is constant (remember \(\dot{\omega} = \text{const} \))

\[\dot{\omega} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t} \]

If \(\dot{\omega} \neq \text{const} \) in time:

Average \(\ddot{\omega} = \frac{\Delta \omega}{\Delta t} \)
What is the relationship between α and ω?

Why: $\omega = \frac{v}{r}$, so $\Delta \omega = \frac{\Delta v}{v}$

So: $\alpha = \frac{\Delta \omega}{\Delta t} = \frac{1}{r} \frac{\Delta v}{\Delta t} = \frac{\alpha_t}{r}$

So: $\alpha = \frac{\alpha_t}{r}$

$\alpha_t = r\alpha$
To summarize:

Linear Motion
- t
- x (or s)
- v
- a (or a_e)

Circular Motion
- t
- θ
- ω
- $a_e = r\alpha$

?

Δ

Units

- $t \, (s)$
- $x \, (m)$
- $v \, (m/s)$
- $a \, (m/s^2)$
- $\theta \, (\text{rad})$
- $\omega \, (\text{rad/s})$
- $\Delta \, (\text{rad/s}^2)$

Just multiply by r!
REMEMBER THE 1-D EQUATIONS FOR STRAIGHT LINE (LINEAR) MOTION?

\[
\begin{align*}
 v &= v_0 + at \\
 x &= v_0 t + \frac{1}{2} at^2 \\
 v^2 &= v_0^2 + 2ax \\
 x &= \frac{v + v_0}{2} t
\end{align*}
\]

WE CAN ALSO USE THESE FOR CIRCULAR MOTION WITH:

\[
\begin{align*}
 x &\rightarrow s \\
 v &\rightarrow v_t \\
 a &\rightarrow a_t
\end{align*}
\]

I.E.

\[
\begin{align*}
 v &= v_0 + a_t t \\
 s &= v_0 t + \frac{1}{2} a_t t^2 \\
 v^2 &= v_0^2 + 2a_t s \\
 s &= \frac{v + v_0}{2} t
\end{align*}
\]

NOT VERY USEFUL IN THIS FORM, SO WE CONVERT THEM
To convert them to contain angular quantities we use

\[
\begin{align*}
S &= r \theta \\
\mathbf{v} &= r \mathbf{w} \\
\mathbf{a}_t &= r \mathbf{a}_t
\end{align*}
\]

\(t = t! \)

So

\[\mathbf{v} = \mathbf{v}_0 + \mathbf{a}_t t \]

becomes

\[\mathbf{w} = \mathbf{w}_0 + \mathbf{a}_t t \]

or:

\[\mathbf{w} = \mathbf{w}_0 + \mathbf{a}_t t \]

Next:

\[S = \mathbf{v}_0 t + \frac{1}{2} \mathbf{a}_t t^2 \]

\[\Rightarrow \quad \Delta \theta = \Delta \omega_0 t + \frac{1}{2} \mathbf{a}_t t^2 \]

or:

\[\Delta \theta = \omega_0 t + \frac{1}{2} \mathbf{a}_t t^2 \]
\[S = \frac{v_0 + v}{2} \cdot t \]

\[\Rightarrow \theta = \frac{\omega + \omega_0}{2} \cdot t \]

\[\theta = \omega + \omega_0 \cdot t \]

So far we've had every term contains \(\omega \) which has cancelled out.

What about

\[v^2 = v_0^2 + 2a_\ell \cdot S \]

Which has squared terms?

Let's see. It becomes

\[a^2 \omega^2 = a^2 \omega_0^2 + 2(\chi_a)(\chi_0 \theta) \]

Or \[\omega^2 = \omega_0^2 + 2\chi_0 \theta \]
So for constant a, we have:

$$
\omega = \omega_0 + \alpha t \\
\theta = \omega_0 t + \frac{1}{2} \alpha t^2 \\
\theta = \frac{\omega + \omega_0}{2} t \\
\omega^2 = \omega_0^2 + 2 \alpha \theta
$$

And we don't have to memorize them if we notice that they have the same form as the linear equations with:

$$
x \rightarrow \theta \\
v \rightarrow \omega \\
\alpha \rightarrow \alpha
$$