Motion in a Plane

PROJECTILE MOTION

So far 1-D motion:

\[x = v_x t, \quad a_x = a \]

Cars accelerating, etc.

Gravity

Now we will combine these: Projectile motion

\[y = v_y t, \quad a_y = -g \]

In fact we use

\[x, y, v_x, v_y, a_x, a_y, t \]
2) **CONSIDER THIS:**

YOU ARE TRAVELING IN A TRAIN AT 200 mph.

1) **YOU HOLD OUT A BOOK IN FRONT OF YOU AND LET IT GO.**

IT LANDS AT YOUR FEET.

2) **THE TRAIN STOPS. YOU DO THE SAME THING.**

IT LANDS AT YOUR FEET.
THE HORIZONTAL MOTION DOES NOT SEEM TO AFFECT THE VERTICAL MOTION!
Let's do two demos:

1) Fire! \(\Rightarrow \text{Spring} \Rightarrow \text{Drop} \)

Both land at the same instant.

2) \(U = \text{const} \)

Ball lands back in car.
The simplest explanation that fits the facts.

We can separate out vertical and horizontal motion.

Vertical motion given by gravity:

\[a_y = -9 \]

Horizontal motion given by:

\[a_x = 0 \]
For an object in the air:

If thrown from the origin:

\[\begin{align*}
\mathbf{U}_x &= \mathbf{v}_x \\
\mathbf{U}_y &= \mathbf{v}_y \\
\mathbf{a}_x &= 0 \\
\mathbf{a}_y &= -g
\end{align*} \]
EQUATIONS OF MOTION

1) HORIZONTAL:

\[u_x = v_{0x} + a_xt \]
\[u_x^2 = v_{0x}^2 + 2a_x \Delta x \]
\[x = v_{0x} t + \frac{1}{2} a_x t^2 \]
\[x = \frac{v_{0x} + u_x}{2} \cdot t \]

2) VERTICAL:

\[u_y = v_{0y} - gt \]
\[u_y^2 = v_{0y}^2 - 2gy \]
\[y = v_{0y} t - \frac{1}{2} gt^2 \]
\[y = \frac{v_{0y} + u_y}{2} \cdot t \]
PROJECTILE MOTION - GROUND TO GROUND

STARTS FROM ORIGIN AT $t = 0$ WITH \vec{U}_0 AT θ_0

WE WANT \vec{r} AND \vec{V} AT ANY LATER TIME t

I.E. WE WANT x, y, U_x, U_y, V_x, V_y AT TIME t
PROJECTILE MOTION - GROUND TO GROUND

INITIAL CONDITIONS:

\[
\begin{align*}
\vec{u}_0x &= u_0 \cos \theta_0 \\
u_0y &= u_0 \sin \theta_0
\end{align*}
\]

\[t = 0\]

To get \(\vec{u} \) at \(t \): WE USE EQUATIONS OF MOTION:

\[
\begin{align*}
\vec{u}_x &= \vec{u}_0x \quad (= \text{const}) \\
u_y &= u_0y + ayt \\
&= u_0 \sin \theta_0 \quad -gt
\end{align*}
\]
PROJECTILE MOTION - GROUND TO GROUND

\[\mathbf{U} \]

\[\begin{align*}
U_x &= U_{0x} = v_0 \cos \theta_0 \\
U_y &= v_0 \sin \theta_0 - gt
\end{align*} \]

THEN

\[\mathbf{U} = \sqrt{U_x^2 + U_y^2} = v_{CH} \]

\[\theta = \tan^{-1}\left(\frac{U_y}{U_x}\right) \text{ or } \arctan\left(\frac{U_y}{U_x}\right) \]
Projectile Motion - Ground to Ground

\[y \uparrow \]

\[\begin{aligned} \vec{v}_y &= 0 \\ \Rightarrow \quad \vec{u} &= \vec{u}_0 \rangle \\ \text{APEX} \\ \vec{u}_y &= \Theta \\ \end{aligned} \]

At Highest Point (Apex):

\[\vec{v}_y = 0 \]

After Apex \(\vec{v}_y \) **is negative**

Notice That

\[\vec{u}_x = \vec{u}_0 \rangle \text{ for all } t \]

(Until it hits the ground!)
LETS FIND POSITION AT t:

HORIZONTAL: $(x = 0 \text{ at } t = 0)$

$$x = u_0x t = u_0 \cos \theta_0 t$$

VERTICAL: $(y = 0 \text{ at } t = 0)$

$$y = u_0y t - \frac{1}{2} g t^2$$

$$y = (u_0 \sin \theta_0) t - \frac{1}{2} g t^2$$
PROJECTILE MOTION - GROUND TO GROUND

RANGE: Horizontal distance traveled before hitting ground given by x when $y = 0$.

$y = 0 = u_0 \sin \theta_0 t - \frac{1}{2} gt^2$

IE: $\frac{1}{2} gt^2 = u_0 \sin \theta_0 t$

So $y = 0$ at $t = 0$ (we knew that!)

Or $\frac{1}{2} gt = u_0 \sin \theta_0$

$t = \frac{2 u_0 \sin \theta_0}{g}$ for $y = 0$
PROJECTILE MOTION - GROUND TO GROUND

\[y \uparrow \]

\[\theta_0 \]

\[\frac{v_0}{\theta_0} \]

\[\text{RANGE} \]

\[\text{RANGE GIVEN BY:} \]

\[x = v_0 \cos \theta_0 t \]

\[\text{AT } t = \frac{2v_0 \sin \theta_0}{g} \]

\[x = \frac{v_0 \cos \theta_0 \times 2v_0 \sin \theta_0}{g} \]

\[x = 2 \sin \theta_0 \cos \theta_0 \frac{v_0^2}{g} \]
PROJECTILE MOTION - GROUND TO GROUND

\[\text{RANGE: } \frac{2 \sin \theta_0 \cos \theta_0 \cdot u_0^2}{g} \]

QUESTION: IF I CAN THROW A BALL WITH SOME MAXIMUM VALUE OF \(u_0 \), IS THERE AN ANGLE \(\theta_0 \) FOR WHICH THE RANGE IS THE GREATEST?

YES! WE CAN FIND IT!
PRO젝TILE MOTION - GROUND TO GROUND

Before we find the best θ_0, how do I know it exists?

Consider $\theta_0 = 90^\circ$ straight up

Range = 0!

Consider $\theta_0 = 0$: hits ground instantly (it never leaves the ground)

\rightarrow Range = 0!

For θ_0 in between Range $\neq 0$.

\therefore There must be a maximum!
PROJECTILE MOTION - GROUND TO GROUND

![Diagram of projectile motion with initial velocity and angle labeled]

We want \(\theta_0 \) which maximizes

\[\frac{2 \sin \theta_0 \cos \theta_0 \, v_0^2}{g} \]

TRIG!

\[2 \sin \theta_0 \cos \theta_0 = \sin 2 \theta_0 \]

MORE TRIG.

Max value of \(\sin \phi \) is 1 when \(\phi = 90^\circ \)

\[\therefore \text{Max range when } 2\theta_0 = 90^\circ \]

Or

Max range when \(\theta_0 = 45^\circ \)
PROJECTILE MOTION - GROUND TO GROUND

MAX. RANGE WHEN $\theta_0 = 45^\circ$
(FOR FIXED U_0.)

VALUE OF MAX. RANGE

$R = 2 \sin \theta_0 \cos \theta_0 \frac{U_0^2}{g}$

$= 2 \sin 45^\circ \cos 45^\circ \frac{U_0^2}{g}$

$= \frac{1}{9}$

WE IGNORED AIR RESISTANCE (TOO DIFFICULT)