\(\textbf{EQUILIBRIUM} \)

Net Force \(\sum \vec{F} = \sum \vec{F}_n \)

If \(\sum \vec{F} = 0 \) \((N \neq 1)\) then object is in \textbf{EQUILIBRIUM}.

(May be at rest or \(\vec{v} = \text{const} \))

This is a vector equation

So:

\(\Sigma F_x = 0 \)
\(\Sigma F_y = 0 \)
\((\Sigma F_z = 0) \)

\(\text{In fact the sum of the components along any direction (axis) must be zero!} \)
Let's look at an example where
\[\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0 \]

I find it easiest to do:
\[\Sigma F_x = 0 \quad \text{as} \quad \Sigma F_{\text{left}} = \Sigma F_{\text{right}} \]

And
\[\Sigma F_y = 0 \quad \text{as} \quad \Sigma F_{\text{up}} = \Sigma F_{\text{down}} \]
\[\Sigma F_{\text{LEFT}} = F_3 \cos \theta_3 \]
\[\Sigma F_{\text{RIGHT}} = F_1 \cos \theta_1 + F_2 \cos \theta_2 \]

So: \[F_3 \cos \theta_3 = F_1 \cos \theta_1 + F_2 \cos \theta_2 \]

\[\Sigma F_{\text{UP}} = F_1 \sin \theta_1 \]
\[\Sigma F_{\text{DOWN}} = F_3 \sin \theta_3 + F_2 \sin \theta_2 \]

So \[F_1 \sin \theta_1 = F_3 \sin \theta_3 + F_2 \sin \theta_2 \]

NOTE: LEFT = RIGHT \[3 = 1 + 2 \]

UP = DOWN \[1 = 3 + 2 \]
A NEW FORCE — THE NORMAL FORCE

DROP AN OBJECT

NOT IN EQUILIBRIUM!

\[\Sigma F \neq 0 \]

HOLD OUT AN OBJECT

IN EQUILIBRIUM:

\[\Sigma F = 0 \] \[\Rightarrow F_{my} = mg \]

OBJECT AT REST ON TABLE

\[F_c = mg \]

IT'S IN EQUILIBRIUM! SOMETHING'S MISSING!
THE NORMAL FORCE N

OBJECT ON TABLE

$N = mg$ (HERE), (EQUILIBRIUM)

ATOMS OF TABLE ACT ON ATOMS OF OBJECT

N IS PERPENDICULAR TO SURFACE (IE NORMAL)

SO

IN OBJECT ON SLOPE

PERP TO SURFACE!
WE WILL EXAMINE TWO TYPES OF "FORCE" PROBLEMS

FIRST: Non-Equilibrium Problems

\[\vec{F} = m \vec{a} \]
\[\vec{a} \neq \vec{0} \]
\[\sum \vec{F} \neq \vec{0} \]

SECOND: Equilibrium Problems

\[\vec{F} = m \vec{a} \]
\[\vec{a} = \vec{0} \]
\[\sum \vec{F} = \vec{0} \]

NOTE:

1) IF \(\vec{F}_{\text{net}} = \sum \vec{F} = \vec{0} \) THEN \(\vec{a} = \vec{0} \)
2) IF \(\vec{a} = \vec{0} \) THEN \(\sum \vec{F} = \vec{0} \)
3) IF \(\sum \vec{F} \neq \vec{0} \) THEN \(\vec{a} \neq \vec{0} \)
4) IF \(\vec{a} \neq \vec{0} \) THEN \(\sum \vec{F} \neq \vec{0} \)

NO EXCEPTIONS!!
HOW TO USE $F = ma$

STANDARD EXAMPLES:

1) **MASSES ON SLOPES**

2) **MASSES + ROPES**

3) **MASSES + ROPES + PULLEYS**

(AND COMBINATIONS OF 1), 2), 3,)
FREE BODY DIAGRAMS (FBD's)

INCREDIBLY USEFUL FOR SOLVING PROBLEMS!

DRAW OBJECT AS A "FREE BODY" AND LABEL ALL FORCES

SIMPLEST EXAMPLE:

MASS ON TABLE:

FBD: (OF MASS)

NO TABLE!
Now do $F = ma$

Here object is at rest

$a = 0$ so $F = 0$ \(\uparrow \text{NET} \)

$F = mg - n = 0$

so $n = mg$
ANOTHER EXAMPLE:

A BODY IN FREE FALL:

\[\downarrow \]

\[mg \]

ONLY ONE FORCE!

Here \(a \neq 0 \)

\[a = g \] (down wards)

So \(F = ma \)

\[mg = ma \]

\[a = g \]

(OK ... A BIT SILLY, GOING AROUND IN CIRCLES)
MASS ACCELERATING DOWN A SLOPE

A CLASSIC EXAMPLE OF HOW TO USE FBD’S!

(NO FRICTION)

FIND a

mg

θ

SLOPE: θ

FBD:

SLOPE ANGLE: HOW COME?
TIME OUT FOR GEOMETRY:

\[90^\circ - \theta \]

\[\theta \]

\[90^\circ - \theta \]

\[\text{mg} \]

\[90^\circ - \theta \]

SO FBD:

\[\text{mg} \]

\[\theta \]

\[n \]
WE WANT a DOWN THE SLOPE

WE NEED COMPONENTS OF FORCES DOWN (PARALLEL) AND PERPENDICULAR TO THE SLOPE.

I DRAW A SECOND FBD:
WE CAN LEARN TWO THINGS:

1) **PERP TO SLOPE:**
 \[a_{\perp} = 0 \therefore F_{\perp} = 0 \]
 \[\therefore mg \cos \theta - n = 0 \]
 \[\therefore n = mg \cos \theta \]
 TRUE, BUT NOT USEFUL HERE!

2) **PARALLEL TO SLOPE:**
 \[a_{\parallel} = a \] USE \[F_{\parallel} = ma \]
 \[F_{\parallel} = mg \sin \theta = ma \]
 \[\alpha = g \sin \theta \]
 NO \(m \).
So:

1) Draw a diagram

2) Draw and label an FBD

3) Draw a second FBD with components in the appropriate directions

4) Apply \(F = ma \)
SO NOW WE CAN ASK VARIOUS QUESTIONS:

E.G. HOW LONG TO SLIDE DOWN A LENGTH \(L \)? (FROM REST)

IT'S A 1-D PROBLEM:-

\[
x = v_0 t + \frac{1}{2} at^2
\]

\[
L = 0 + \frac{1}{2} g \sin \theta t^2
\]

\[
t = \sqrt{\frac{2L}{g \sin \theta}}
\]

NOTE \(a \) is \(\oplus \) HERE (DIRECTION OF POSITIVE \(y \))
We need to discuss tension T.

We will use massless ropes.

Object hanging from ceiling.

FBD: of mass

$mg - T = ma$

$a = 0$

$T = mg$
TENSION + ROPEs

(FBD of rope)

Every tiny piece of rope has equal and opposite forces:

\[\begin{align*}
\text{Net force} & = m \text{a} \\
\text{Net force} & = 0 \times \text{a} = 0
\end{align*} \]

So \(T \longleftrightarrow T' \) \(\Rightarrow T' = T \)

But wait - there's more!

If \(a \neq 0 \); rope has \(m = 0 \)
TOWING LOCO + CAR

CAR

LOCO

\[M_c \quad \text{ROPE} \quad M_L \quad \rightarrow a \]

LOCO CAN PROVIDE \(F_{TOT} \) \(\rightarrow \)

EVERYTHING TOGETHER. \(\alpha = ? \) \(T = ? \)

TWO FBD's:

CAR: \[M_c \rightarrow T \]

\[F = m_a \]

\[0 \ T = M_c a \]

LOCO:

\[T \leftarrow M_L \rightarrow F_{TOT} \]

\(F_{TOT} - T = M_L a \)

SAME \(a \)

ADD \(1 + 2 \):

\[T = M_c a \]

\[F_{TOT} - T = M_L a \]

\[F_{TOT} = M_c a + M_L a \]

\[= (M_c + M_L) a \]

\[a = \frac{F_{TOT}}{(M_c + M_L)} \]
WHAT ABOUT T?

USE CAR FBD:

$[M_c] \rightarrow T$

$T = M_c \cdot \alpha$

$= M_c \left(\frac{F_{tot}}{M_c + M_L} \right)$

$\bar{T} = \frac{M_c}{M_c + M_L} \cdot F_{tot}$

NOTE: CAN GET α DIRECTLY; WITHOUT FBD'S:

PUT CAR + LOCO IN "BROWN BAG"

$\Rightarrow \quad \boxed{\square \square} \Rightarrow F_{tot}$

$M = M_c + M_L$

$\Rightarrow \quad \boxed{\square \square} \Rightarrow F_{tot}$

$so \quad F = ma$

$F_{tot} = (M_c + M_L) \alpha$

etc.
THAT WAS A PRETTY FEEBLE TRAIN!

LET'S ADD A CAR:

![Diagram showing car 2, car 1, and locomotive connected by forces with an arrow indicating acceleration.]

(I'VE CHANGED NOTATION!!)

FBD's:

CAR 2
- \[T_2 = M_3 a \]
- \[T_1 - T_2 = M_3 a \]

CAR 1
- \[T_2 \]
- \[T_1 \]

LOCO
- \[F_T \]
- \[F_T - T_1 = M_1 a \]

ADD:

\[F_T - T_1 + T_1 - T_2 + T_2 = (M_1 + M_2 + M_3) a \]

SO

\[a = \frac{F_T}{M_1 + M_2 + M_3} \]

(IE \(a = \frac{F_{TOT}}{M_{TOT}} \) AS BEFORE)
THEN:

\[T_2 = M_3 a = \frac{M_3 F_T}{M_1 + M_2 + M_3} \]

To get \(T_1 \) can use either:

\[T_1 - T_2 = M_2 a \quad \text{(so } T_1 = M_2 a + T_2) \]

or:

\[F_T - T_1 = M_1 a \quad (T_1 = F_T - M_1 a) \]

Both give:

\[T_1 = \frac{M_2 + M_3}{M_1 + M_2 + M_3} F_T \]

(check it out)

(exercise for student)

\[\text{[we can add more cars if we wish...]} \]
Masses + Ropes + Pulleys

A pulley is a device that redirects the tension in the rope.

Massless pulley! No friction!

T same before and after pulley.
FRICTION NOW ANYWHERE

- **a = ?**
- **T = ?**

TWO EBD's

- **M₁**
 - **n → a**
 - **T**
 - **M₁g**
 - **Horiz:** **T = M₁a**

- **M₂**
 - **T**
 - **M₂g**
 - **Vert:** **M₂g - T = M₂a**

Vert:
- **N = M₁g** (not used here)
- **F = m₁a**

ADD:
- **M₂g + T**
- **= M₁a + M₂a**

SO:
- **M₂g = (M₁ + M₂)a**

a = \frac{M₂g}{M₁ + M₂}

AND:
- **T = M₁a**
- **T = \left(\frac{M₂}{M₁ + M₂}\right)g**
SO NOW WE COULD TACKLE ANYTHING!

E.G.

SLOPES + ROPES + PULLEYS

BUT WE WON'T DO THIS ONE! — NOT WITH SO MANY MASSES!