15         .35093050047350483e-2, .81371973654528350e-2, .12696032654631030e-1, .17136931456510717e-1,
 
   16         .21417949011113340e-1, .25499029631188088e-1, .29342046739267774e-1, .32911111388180923e-1,
 
   17         .36172897054424253e-1, .39096947893535153e-1, .41655962113473378e-1, .43826046502201906e-1,
 
   18         .45586939347881942e-1, .46922199540402283e-1, .47819360039637430e-1, .48270044257363900e-1,
 
   19         .48270044257363900e-1, .47819360039637430e-1, .46922199540402283e-1, .45586939347881942e-1,
 
   20         .43826046502201906e-1, .41655962113473378e-1, .39096947893535153e-1, .36172897054424253e-1,
 
   21         .32911111388180923e-1, .29342046739267774e-1, .25499029631188088e-1, .21417949011113340e-1,
 
   22         .17136931456510717e-1, .12696032654631030e-1, .81371973654528350e-2, .35093050047350483e-2
 
   26         -.498631930924740780,  -.49280575577263417,  -.4823811277937532200, -.46745303796886984000,
 
   27         -.448160577883026060,  -.42468380686628499,  -.3972418979839712000, -.36609105937014484000,
 
   28         -.331522133465107600,  -.29385787862038116,  -.2534499544661147000, -.21067563806531767000,
 
   29         -.165934301141063820,  -.11964368112606854,  -.7223598079139825e-1, -.24153832843869158e-1,
 
   30          .24153832843869158e-1, .7223598079139825e-1, .11964368112606854,    .165934301141063820,
 
   31          .21067563806531767000, .2534499544661147000, .29385787862038116,    .331522133465107600,
 
   32          .36609105937014484000, .3972418979839712000, .42468380686628499,    .448160577883026060,
 
   33          .46745303796886984000, .4823811277937532200, .49280575577263417,    .498631930924740780
 
   37 template<
typename Integrand, methods Method>
 
   48                         double a = 0.5*(max+
min);
 
   61 template<
typename Integrand, methods Method>
 
   72                         double a = 0.5*(max+
min);
 
   77                         func(x, y, numPoints);
 
   91 double qg32( 
double, 
double, 
double(*)(
double) );
 
  119                                 for (
int i=0; i<
m_n; ++i)
 
  121                                         double x = (
m_a*(m_n-i-0.5)+
m_b*(i+0.5))*rn;
 
  157                                 const double sixth = 1./6.;
 
  159                                 for (
int i=0; i<
m_n; ++i)
 
  161                                         double x1 = (
m_a*(m_n-i-sixth)+
m_b*(i+sixth))*rn;
 
  163                                         double x2 = (
m_a*(m_n-i-1+sixth)+
m_b*(i+1-sixth))*rn;
 
  205                 const int itmax=40/m_f.NREF, npt=5;
 
  206                 double d1[npt], d0[npt-1];
 
  208                 const double w1 = m_f.NREF*m_f.NREF, w2 = 1.0/w1;
 
  209                 for (
int i=0; i<npt; ++i)
 
  213                 for (
int i=0; i<itmax; ++i)
 
  218                         int l = (i<npt-1) ? i : npt-1;
 
  219                         for (
int m=0; m<l; ++m)
 
  225                         for (
int m=0; m<l; ++m)
 
  227                                 d1[m+1] = (d1[m]-d0[m]*fr)/(w1-fr);
 
  232                         m_dy = fabs(m_sum-y);
 
  235                         if ( i > 2 && m_dy <= eps*fabs(y) )
 
  268                 const int itmax=40/m_f.NREF;
 
  269                 double coarse=0.,fine=0.;
 
  270                 for (
int i=0; i<itmax; ++i)
 
  276                         m_dy = fabs(coarse-fine);
 
  279                         if ( i > 2 && m_dy <= eps*fabs(fine) )
 
Midpoint(const T &f, double a, double b)
static const int numPoints
NORETURN void TotalInsanity(void)
ALIGNED(CD_ALIGN) static const double qg32_w[numPoints]
Trapezium(const T &f, double a, double b)
double sum(double min, double max) const 
double sum(double min, double max) const 
double reduce_ab(const double *a, const double *b, long ilo, long ihi)
double qg32(double, double, double(*)(double))
VecIntegrator(const Integrand &fun)
Integrator(const Integrand &fun)